Film-Forming Chitosan/Poly (vinyl alcohol)–Poly (hexamethylene biguanide) Antiseptic Spray for Wound Cleansing: A Sustainable Healthcare Approach Aligned with Sustainable Development Goals (SDGs) Completed with Bibliometric Analysis

Joel Maria Joju(1), Tanushree Suresh(2), Anjana Ajithkumar(3), Amritha Sajeev(4), Riju Ramachandran Menon(5), Anil Kumar Vasudevan(6), Jayakumar Rangasamy(7),


(1) Amrita Vishwa Vidyapeetham
(2) Amrita Vishwa Vidyapeetham
(3) Amrita Vishwa Vidyapeetham
(4) Amrita Vishwa Vidyapeetham
(5) Amrita Vishwa Vidyapeetham
(6) Amrita Vishwa Vidyapeetham
(7) Amrita Vishwa Vidyapeetham
Corresponding Author

Abstract


Proper wound cleansing is a fundamental step in preventing infection and supporting effective wound management. This study aimed to develop and evaluate a film-forming antiseptic spray composed of chitosan, polyvinyl alcohol, and polyhexamethylene biguanide for wound cleansing applications. The formulation was prepared using a solution-based approach and characterized in terms of morphology, chemical interactions, sprayability, film formation stability, antibacterial, and antibiofilm performance. The developed spray demonstrated uniform application, stable film formation, and effective incorporation of the antimicrobial agent. Biological evaluations confirmed enhanced antibacterial and antibiofilm activity because of synergistic interactions between the biopolymer matrix and the cationic antiseptic component. This study was further supported by bibliometric evidence indicating a growing global research focus on wound care materials and film-forming antiseptic sprays, emphasizing their relevance to sustainable healthcare innovation. The findings contribute to the advancement of sustainable wound care technologies and align with the Sustainable Development Goals, particularly the goal of promoting good health and well-being.

Keywords


Antibacterial; Anti-biofilm; Antiseptic spray; Chitosan; PHMB; Wound cleansing

References


Ahmed, S., and Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences, 10(1), 27-37.

Anju, V. T., Busi, S., Imchen, M., Kumavath, R., Mohan, M. S., Salim, S. A., Subhaswaraj, P., and Dyavaiah, M. (2022). Polymicrobial infections and biofilms: Clinical significance and eradication strategies. Antibiotics, 11(12), 1731.

Antony, I. R., Pradeep, A., Pillai, A. V., Menon, R. R., Kumar, V. A., and Jayakumar, R. (2023). Antiseptic chitosan-poly (hexamethylene) biguanide hydrogel for the treatment of infectious wounds. Journal of Functional Biomaterials, 14(10), 528.

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19), 3256.

Atiyeh, B. S., Dibo, S. A., and Hayek, S. N. (2009). Wound cleansing, topical antiseptics and wound healing. International Wound Journal, 6(6), 420-430.

Cao, X., Scoffield, J., Xie, B., Morton, D. B., and Wu, H. (2023). Drosophila melanogaster as a model to study polymicrobial synergy and dysbiosis. Frontiers in Cellular and Infection Microbiology, 13, 1279380.

Chamsai, B., Soodvilai, S., Opanasopit, P., and Samprasit, W. (2022). Topical film-forming chlorhexidine gluconate sprays for antiseptic application. Pharmaceutics, 14(6), 1124.

Chindera, K., Mahato, M., Kumar Sharma, A., Horsley, H., Kloc-Muniak, K., Kamaruzzaman, N. F., Kumar, S., McFarlane, A., Stach, J., Bentin, T., and Good, L. (2016). The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Scientific Reports, 6(1), 23121.

Dai, T., Tanaka, M., Huang, Y. Y., and Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Review of Anti-infective Therapy, 9(7), 857-879.

Dias, F. G. G., de Freitas Pereira, L., Parreira, R. L. T., Veneziani, R. C. S., Bianchi, T. C., de Paula Fontes, V. F. N., de Carols Galvani, M., Cerce, D. D. P., Martins, C. H. G., Rinaldi-Neto, F., Ferreira, N. H., da Silva, L. H. D., de Oliveria, L. T. S., Esperandim, T. R., de Sousa, F. A., Ambrosio, S. R, and Tavares, D. C. (2021). Evaluation of the antiseptic and wound healing potential of polyhexamethylene guanidine hydrochloride, as well as its toxic effects. European Journal of Pharmaceutical Sciences, 160, 105739.

Guzman-Puyol, S., Ceseracciu, L., Heredia-Guerrero, J. A., Anyfantis, G. C., Cingolani, R., Athanassiou, A., and Bayer, I. S. (2015). Effect of trifluoroacetic acid on the properties of polyvinyl alcohol and polyvinyl alcohol–cellulose composites. Chemical Engineering Journal, 277, 242-251.

Hurlow, J., Wolcott, R. D., and Bowler, P. G. (2025). Clinical management of chronic wound infections: The battle against biofilm. Wound Repair and Regeneration, 33(1), 13241.

Jiang, P., Li, Q., Luo, Y., Luo, F., Che, Q., Lu, Z., Yang, S., Yang, Y., Chen, X., and Cai, Y. (2023). Current status and progress in research on dressing management for diabetic foot ulcer. Frontiers in Endocrinology, 14, 1221705.

Kathe, K., and Kathpalia, H. (2017). Film forming systems for topical and transdermal drug delivery. Asian Journal of Pharmaceutical Sciences, 12(6), 487-497.

Lee, Y. J., Jang, H. J., Chung, I. Y., and Cho, Y. H. (2018). Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus. Journal of Microbiology, 56(8), 534-541.

Liu, B., Zhang, J., and Guo, H. (2022). Research progress of polyvinyl alcohol water-resistant film materials. Membranes, 12(3), 347.

Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., Li, Z., and Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 8(14), 7533-7549.

Ma, Q., Du, L., Yang, Y., and Wang, L. (2017). Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA). Food Hydrocolloids, 63, 677-684.

Malone, M., and Schultz, G. (2022). Challenges in the diagnosis and management of wound infection. British Journal of Dermatology, 187(2), 159-166.

Matica, M. A, Aachmann, F. L., Tøndervik, A., Sletta, H., and Ostafe, V. (2019). Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International Journal of Molecular Sciences, 20(29), 5889.

Mori, N. M, Patel, P., Sheth, N. R., Rathod, L. V., and Ashara, K. C. (2017). Fabrication and characterization of film-forming voriconazole transdermal spray for the treatment of fungal infection. Bulletin of Faculty of Pharmacy Cairo University, 55(1), 41-51.

Mothilal, N. P., Pradeep, A., Arthi, C., Gopal, K., Kaliannagounder, V. K., Park, C. H., Kumar, V. A., and Rangasamy, J. (2024). Amikacin sulphate loaded chitosan-diopside nanoparticles composite scaffold for infectious wound healing. International Journal of Biological Macromolecules, 263, 130217.

Mulcahy, H., Sibley, C. D., Surette, M. G., and Lewenza, S. (2011). Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo. PLoS pathogens, 7(10), 1002299.

Mulder, G. D., Cavorsi, J. P., and Lee, D. K. (2007). Polyhexamethylene Biguanide (PHMB): An addendum to current topical antimicrobials. Wounds, 19(7), 173-182.

Nandiyanto, A. B. D. (2026). How to read and interpret FTIR spectra for materials: A master dataset with step-by-step guided peak-correlation analysis, representative examples, and a foundation for future artificial intelligence (AI)-assisted analysis. ASEAN Journal for Science and Engineering in Materials, 5(2), 323-356.

Negut, I., Grumezescu, V., Grumezescu, A. M. (2018). Treatment strategies for infected wounds. Molecules, 23(9), 2392.

Nimal, T. R., Baranwal, G., Bavya, M. C., Biswas, R., and Jayakumar, R. (2016). Anti-staphylococcal activity of injectable nano tigecycline/chitosan-PRP composite hydrogel using Drosophila melanogaster model for infectious wounds. ACS Applied Materials and Interfaces, 8(34), 22074-22083.

Oun, A. A, Shin, G. H, Rhim, J. W., and Kim, J. T. (2022). Recent advances in polyvinyl alcohol-based composite films and their applications in food packaging. Food Package Shelf Life, 34, 100991.

Pandian, M., Selvaprithviraj, V., Pradeep, A., and Rangasamy, J. (2021). In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial, and anti-biofilm hydrogel. International Journal of Biological Macromolecules, 188, 501-511.

Patrulea, V., Ostafe, V., Borchard, G., and Jordan, O. (2015). Chitosan as a starting material for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 97, 417-426.

Rahman Khan, M. M., Rumon, M. M. H., and Islam, M. (2024). Synthesis, rheology, morphology, and mechanical properties of biodegradable PVA-based composite films: A review on recent progress. Processes, 12(12), 2880.

Sen, C. K., Roy, S., Mathew-Steiner, S. S., and Gordillo, G. M. (2021). Biofilm management in wound care. Plastic and reconstructive surgery, 148(2), 275e-288e.

Shetty, A., Dubey, A., Chrystle, J., Manohar, M., John, A., Amitha, N., Das, P., and Hebbar, S. (2024). Fabrication and in vitro characterization of curcumin film-forming topical spray: An integrated approach for enhanced patient comfort and efficacy. F1000Research, 13, 138.

Soujith, N. B. S., and Jawahar, N. (2023). Terbinafine HCl film-forming spray for the treatment of topical fungal infections. Indian Journal of Pharmaceutical Education and Research, 57(1), 85-97.

Sowlati-Hashjin, S., Carbone, P., and Karttunen, M. (2020). Insights into the polyhexamethylene biguanide (PHMB) mechanism of action on bacterial membrane and DNA: A molecular dynamics study. The Journal of Physical Chemistry B, 124(22), 4487-4497.

Sritharadol, R., Nakpheng, T., Heng, P. W. S., and Srichana, T. (2017). Development of a topical mupirocin spray for antibacterial and wound-healing applications. Drug Development and Industrial Pharmacy, 43(10), 1715-1728.

Umar, A. K, Butarbutar, M., Sriwidodo, S., and Wathoni, N. (2020). Film-forming sprays for topical drug delivery. Drug Design, Development and Therapy, 14, 2909-2925.

Umar, A. K., Sriwidodo, S., Maksum, I. P., and Wathoni, N. (2021). Film-forming spray of water-soluble chitosan containing liposome-coated human epidermal growth factor for wound healing. Molecules, 26(17), 5326.

Wang, S., Ren, J., Li, W., Sun, R., and Liu, S. (2014). Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydrate Polymers, 103, 94-99.

Wang, W. Y., Hu, H. W., Chiou, J. C., Yung, K. F., and Kan, C. W. (2023). Poly (hexamethylene biguanide) hydrochloride (PHMB)-based materials: synthesis, modification, properties, determination, and application. Polymer Chemistry 14(48), 5226-5252.

Wilkins, R. G., and Unverdorben, M. (2013). Wound cleaning and wound healing: a concise review. Advances in Skin and Wound Care, 26(4), 160-163.

Yang, E., Qin, X., and Wang, S. (2008). Electrospun crosslinked polyvinyl alcohol membrane. Materials Letters, 62(20), 3555-3557.


Full Text: PDF

Article Metrics

Abstract View : 84 times
PDF Download : 62 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Bumi Publikasi Nusantara

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.