Effect of the Width-Diameter Ratio of Twisted Tape Inserts in Heat Exchanger Tubes on Heat Transfer

Farah Abd-Alsalam Ibrahim(1), Nabil Jamil Yasin(2), Tahseen Ali Jabbar(3),


(1) Southern Technical College
(2) Middle Technical University
(3) Southern Technical College
Corresponding Author

Abstract


This study investigated how the width–diameter ratio of twisted tape inserts and tube size influence heat transfer and pressure loss in circular heat exchanger tubes under turbulent air flow. A three-dimensional steady CFD model with an SST k–omega turbulence closure simulated uniformly heated tubes containing constant pitch tapes across multiple diameters and ratios. Grid independence and literature validation established numerical reliability. A mid-size tube consistently delivered the best thermal performance, and the largest tested width–diameter ratio produced the highest Nusselt enhancement while keeping pressure penalties manageable. The inserts markedly outperformed a plain tube in overall heat transfer. Performance improves because swirl from the tape strengthens core to wall mixing and thins the thermal boundary layer without excessively raising friction at suitable geometries. Findings guide compact, energy-efficient exchanger design by identifying geometry combinations that maximize heat transfer for practical pumping power. Designers can apply the framework across diverse operating conditions.

Keywords


Heat transfer enhancement; Thermal performance factor; Twisted tape; Width-to-diameter ratio

References


Abdulrahman, R. S., Ibrahim, F. A., and Dakhil, S. F. (2019). Development of paraffin wax as phase change material based latent heat storage in heat exchanger. Applied Thermal Engineering, 150, 193–199.

Abdulrahman, R. S., Ibrahim, F. A., and Faisel, S. H. (2020). Numerical study of heat transfer and exergy analysis of shell and double tube heat exchanger. International Journal of Heat and Technology, 38(4), 925–932.

Agarwal, S. K., and Raja Rao, M. (1996). Heat transfer augmentation for the flow of a viscous liquid in circular tubes using twisted tape inserts. International Journal of Heat and Mass Transfer, 39(17), 3547–3557.

Ahmed, F., Nasrullah, M. H., Ahmad, I., Kobayashi, K., and Alam, S. B. (2024). Enhancing thermo-hydraulic performance in dimpled channels with wavy tape inserts for heat pipe and heat exchanger design with complex energy systems. Case Studies in Thermal Engineering, 60, 104583.

Al-Obaidi, A. R., and Alhamid, J. (2021). Investigation of thermo-hydraulics flow and augmentation of heat transfer in the circular pipe by combining using corrugated tube with dimples and fitted with varying tape insert configurations. International Journal of Heat and Technology, 39(2), 365–374.

Bas, H., and Ozceyhan, V. (2012). Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Experimental Thermal and Fluid Science, 41, 51–58.

Chang, S. W., Jan, Y. J., and Liou, J. S. (2007). Turbulent heat transfer and pressure drop in tube fitted with serrated twisted tape. International Journal of Thermal Sciences, 46(5), 506–518.

Dagdevir, T., and Ozceyhan, V. (2021). An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts. International Journal of Thermal Sciences, 159, 106564.

Eiamsa-Ard, S., and Promvonge, P. (2010). Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts. International Journal of Heat and Mass Transfer, 53(7–8), 1364–1372.

Eiamsa-Ard, S., Wongcharee, K., Eiamsa-Ard, P., and Thianpong, C. (2010). Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes. Experimental Thermal and Fluid Science, 34(8), 1151–1161.

Ghalambaz, M., Arasteh, H., Mashayekhi, R., Keshmiri, A., Talebizadehsardari, P., and Yaïci, W. (2020). Investigation of overlapped twisted tapes inserted in a double-pipe heat exchanger using two-phase nanofluid. Nanomaterials, 10(9), 1656.

Isa, S. M., Mahat, R., Fakhrudin, M. F. F., Suhalizam, N. S., Marzuki, M. M., and Hanif, H. (2025). Magnetohydrodynamic natural convection flow and heat transfer of dusty nanofluid over a vertical stretching sheet. Journal of Advanced Research in Numerical Heat Transfer, 36(1), 14–28.

Khalil, S. S. M., Sahai, R. S. N., Gulhane, N. P., Pathan, K. A., Attar, A. R., and Khan, S. A. (2023). Experimental investigation of local Nusselt profile dissemination to augment heat transfer under air jet infringements for industrial applications. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 112, 161–173.

Khlewee, A. S., Alaiwi, Y., Jasim, T. A., Talib, M. A., Mahdi, A. J. H., and Al-Khafaji, Z. (2024). Numerical investigation of nanofluid-based flow behavior and convective heat transfer using helical screw. Journal of Advanced Research in Numerical Heat Transfer, 27(1), 85–106.

Li, H., Wang, Y., Han, Y., Li, W., Yang, L., Guo, J., Liu, Y., Zhang, J., Zhang, M., and Jiang, F. (2022). A comprehensive review of heat transfer enhancement and flow characteristics in the concentric pipe heat exchanger. Powder Technology, 397, 117037.

Liu, S., and Sakr, M. (2013). A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renewable and Sustainable Energy Reviews, 19, 64–81.

Luo, J., Alghamdi, A., Aldawi, F., Moria, H., Mouldi, A., Loukil, H., Deifalla, A. F., and Ghoushchi, S. P. (2024). Thermal-frictional behavior of new special shape twisted tape and helical coiled wire turbulators in engine heat exchangers system. Case Studies in Thermal Engineering, 53, 103877.

Mousavi, S. M. S., and Alavi, S. M. A. (2022). Experimental and numerical study to optimize flow and heat transfer of airfoil-shaped turbulators in a double-pipe heat exchanger. Applied Thermal Engineering, 215, 118961.

Mwesigye, A., Bello-Ochende, T., and Meyer, J. P. (2016). Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts. International Journal of Thermal Sciences, 99, 238–257.

Nakhchi, M. E., and Esfahani, J. A. (2019). Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. International Journal of Thermal Sciences, 138, 75–83.

Nandiyanto, A. B. D., Putri, S. R., Ragadhita, R., and Kurniawan, T. (2022). Design of heat exchanger for the production of carbon particles. Journal of Engineering Science and Technology, 17(4), 2788–2798.

Nandiyanto, A. B. D., Putri, S. R., Ragadhita, R., Maryanti, R., and Kurniawan, T. (2021). Design of heat exchanger for the production of synthesis silica. Journal of Engineering Research Kuwait, 9, 16033.

Nandiyanto, A. B. D., Ragadhita, R., and Kurniawan, T. (2021). Design of laboratory scale water bath heat exchanger with shell and tube type. Journal of Engineering Science and Technology, 16, 49–56.

Nandiyanto, A. B. D., Ragadhita, R., and Kurniawan, T. (2022). Shell and tube heat exchanger design for titanium dioxide particle production process. Journal of Engineering Science and Technology, 17(5), 3224–3234.

Nandiyanto, A. B. D., Ragadhita, R., Putri, S. R., Maryanti, R., and Kurniawan, T. (2021). Design of heat exchanger for the production of zinc imidazolate framework-8 (ZIF-8) particles. Journal of Engineering Research Kuwait, 9, 16035.

Nandiyanto, A. B. D., Sofianti, I., Sari, A. G. P., Madani, R.F., Febrianti, F., Ragadhita, R., Kurniawan, T., Jumansyah, R., Soegoto, E.S., Luckyardi, S., and Aziz, M. (2023). Computational calculation on the shell and tube-type heat exchanger for lanthanum oxide (La2O3) nanoparticle production process for energy-related material application. Mathematical Modelling of Engineering Problems, 10(2), 715–719.

Nasir, M. N. A., Harudin, N., Selamat, F. E., and Marlah, Z. (2023). Development of enhanced Taguchi’s T-Method model in predicting energy demand. Semarak Engineering Journal, 1(1), 34–45.

Qasim, R. M., Faisal, S. H., and Jabbar, T. A. (2022a). Impact of T-splitter on the laminar flow field around cylinder pier. Advances in Science and Technology Research Journal, 16(5).

Qasim, R. M., Jabbar, T. A., and Faisal, S. H. (2022b). Effect of the curved vane on the hydraulic response of the bridge pier. Ocean Systems Engineering, 12(3), 335–358.

Ragadhita, R., and Nandiyanto, A. B. D. (2024). How to calculate and design shell and tube-type heat exchanger with a single heat transfer. Asean Journal for Science and Engineering in Materials, 3(1), 21–42.

Rahman, M. T., Habib, K., Quader, M. N., Aslfattahi, N., Kadirgama, K., and Das, L. (2023). Effect of porous density of twisted tape inserts on heat transfer performance inside a closed conduit. Heliyon, 9(11), e21206.

Salman, S. D., Kadhum, A. A. H., Takriff, M. S., and Mohamad, A. B. (2013). CFD analysis of heat transfer and friction factor characteristics in a circular tube fitted with horizontal baffles twisted tape inserts. In IOP Conference Series: Materials Science and Engineering, 50(1), 012034.

Sheikholeslami, M., Farshad, S. A., Shafee, A., and Babazadeh, H. (2020). Influence of Al2O3 nano powder on performance of solar collector considering turbulent flow. Advanced Powder Technology, 31(9), 3695–3705.

Sivakumar, K., Rajan, K., Mohankumar, T., and Naveenchnadran, P. (2020). Analysis of heat transfer characteristics with triangular cut twisted tape (TCTT) and circular cut twisted tape (CCTT) inserts. Materials Today: Proceedings, 22, 375–382.

Sun, C., Wang, W., Tian, X.-W., Suo, W.-J., Qian, S.-H., and Bao, H. (2025). Optimizing heat transfer enhancement in helical tube with twisted tape using NSGA-II for multi-objective design. International Journal of Thermal Sciences, 210, 109630.

Tao, H., Alawi, O. A., Hussein, O. A., Ahmed, W., Abdelrazek, A. H., Homod, R. Z., Eltaweel, M., Falah, M. W., Al-Ansari, N., and Yaseen, Z. M. (2022). Thermohydraulic analysis of covalent and noncovalent functionalized graphene nanoplatelets in circular tube fitted with turbulators. Scientific Reports, 12(1), 17710.

Thapa, S., Samir, S., Kumar, K., and Singh, S. (2021). A review study on the active methods of heat transfer enhancement in heat exchangers using electroactive and magnetic materials. Materials Today: Proceedings, 45, 4942–4947.

Tusar, M., Ahmed, K., Bhuiya, M., Bhowmik, P., Rasul, M., and Ashwath, N. (2019). CFD study of heat transfer enhancement and fluid flow characteristics of laminar flow through tube with helical screw tape insert. Energy Procedia, 160, 699–706.

Yasin, A. H., and Yasin, N. J. (2020). Numerical and experimental study for assessment the effect of baffles in a grooved cavity. In IOP Conference Series: Materials Science and Engineering, 881(1), 012048.

Zheng, L., Xie, Y., and Zhang, D. (2017). Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid. International Journal of Heat and Mass Transfer, 111, 962–981.


Full Text: PDF

Article Metrics

Abstract View : 0 times
PDF Download : 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Bumi Publikasi Nusantara

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.