Impact of Relative Humidity on Electrochemical Performance of MXene-Zn-CNC Composite Films

(1) Universitas Andalas
(2) Universitas Andalas
(3) Universitas Andalas

Abstract
This study examines the influence of relative humidity (RH) on the electrochemical and structural properties of polyvinyl alcohol (PVA) composite films reinforced with MXene, zinc oxide (ZnO), and cellulose nanocrystals (CNC). Composite films were fabricated via solvent casting and conditioned at RH levels of 50%, 75%, and 94%. Cyclic voltammetry and four-point probe tests revealed substantial enhancements in current density, specific capacitance, and bulk conductivity with increasing RH, attributed to improved ionic mobility and interfacial polarization. X-ray diffraction indicated reduced crystallinity due to polymer swelling, while scanning electron microscopy showed enhanced MXene dispersion at higher RH. Fourier-transform infrared spectroscopy confirmed intensified hydroxyl interactions, reflecting increased hydrophilicity. These humidity-induced improvements suggest promising applications in humidity-responsive flexible electronics and sensors. However, potential trade-offs include reduced mechanical stability under prolonged exposure. The findings offer new insights for optimizing hydrophilic polymer composites to enhance environmental adaptability and advanced device performance.
Keywords
References
Bian, X., Yang, Z., Zhang, T., Yu, J., Xu, G., Chen, A., He, Q., and Pan, J. (2023). Multifunctional flexible AgNW/MXene/PDMS composite films for efficient electromagnetic interference shielding and strain sensing. ACS Applied Materials and Interfaces, 15(35), 41906–41915.
Cao, J., Jiang, Y., Li, X., Yuan, X., Zhang, J., He, Q., Ye, F., Geng, L., Guo, S., Zhang, Y., and Wang, Q. (2024). A flexible and stretchable MXene/Waterborne polyurethane composite-coated fiber strain sensor for wearable motion and healthcare monitoring. Sensors, 24(1), 271.
Cui, X., Miao, C., Lu, S., Liu, X., Yang, Y., and Jingchao, S. (2023). Strain sensors made of MXene, CNTs, and TPU/PSF asymmetric structure films with large tensile recovery and applied in human health monitoring. ACS Applied Materials and Interfaces, 15(51), 59655–59670.
Cui, Y., Ru, G., Zhang, T., Yang, K., Liu, S., Qi, W., Ye, Q., Liu, X., and Zhou, F. (2024). Schottky Interface Engineering in Ti3C2Tx/ZnS organic hydrogels for high‐performance multifunctional flexible absorbers. Advanced Functional Materials, 35(11).
Fang, Y., Lian, R., Li, H., Zhang, Y., Gong, Z., Zhu, K., Ye, K., Yan, J., Wang, G., Gao, Y., Wei, Y., and Cao, D. (2020). Induction of planar sodium growth on MXene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes. ACS Nano, 14(7), 8744–8753.
Fatimah, S., Ragadhita, R., Al Husaeni, D.F., and Nandiyanto, A.B.D. (2022). How to calculate crystallite size from X-ray diffraction (XRD) using Scherrer method. ASEAN Journal of Science and Engineering, 2(1), 65-76.
Guo, M., Yuan, C., Xu, T., Zhong, S., Wang, W., Zou, T., Zhang, T., and Yu, X. (2023). In situ built nanoconfined TiO2 particles in robust‐flexible MXene@rGO conductive framework enabling high‐performance hybrid magnesium–sulfur batteries. Advanced Energy Materials, 13(26), 2300417.
Hassan, M., Li, P., Lin, J., Li, Z., Javed, M. S., Peng, Z., and Çelebi, K. (2024). Smart energy storage: W18O49 NW/Ti3C2Tx composite‐enabled all solid state flexible electrochromic supercapacitors. Small, 20(33), 2400278.
Hu, S., and Li, S. (2024). Flexible and conductive polyvinyl alcohol/Ti3C2Tx composite film with excellent electromagnetic interference shielding performance. International Conference on Computer Technology, Information Engineering, and Electron, 12987, 180-185.
Huang, Y., and Bian, S. (2024). Free-Standing MXene/Carbon Nanotube@Fe2O3 Film Electrodes With High Capacitance for All-in-One Supercapacitors. ACS Applied Energy Materials, 7(22), 10358–10366.
Jurečič, V., Lakshmanan, S., Novak, N., Kokol, V., and Bobnar, V. (2024). Percolative dielectric behavior of titanium carbide MXene/cellulose nanofibrils composite films. APLl Materials, 12(11), 111102.
Kim, S., Kang, C., Choi, T., Kim, J., and Kim, H. (2023). Conformal passivation of self-cleanable, flexible, and transparent polytetrafluoroethylene thin films on two-dimensional MXene and three-dimensional Ag nanowire composite electrodes. ACS Applied Electronic Materials, 5(3), 1636–1649.
Lee, S., Nguyen, N. K., Kim, W., Kim, M., Cao, V., and Nah, J. (2023). Absorption‐dominant electromagnetic interference shielding through electrical polarization and triboelectrification in surface‐patterned ferroelectric poly[(vinylidenefluoride‐co‐trifluoroethylene)‐MXene] composite. Advanced Functional Materials, 33(43), 2307588.
Li, H., Ru, X., Song, Y., Wang, H., Yang, C., Zheng, S., Gong, L., Zhang, X., Duan, H., Liu, Z., Zhang, Q., and Chen, Y. (2022). Flexible sandwich-structured silicone rubber/MXene/Fe3O4 composites for tunable electromagnetic interference shielding. Industrial amd Engineering Chemistry Research, 61(32), 11766–11776.
Li, J., Li, Y., Yang, L., and Yin, S. (2022). Ti3C2Tx/pani/liquid metal composite microspheres with 3D nanoflower structure: Preparation, characterization, and applications in EMI shielding. Advanced Materials Interfaces, 9(10), 2102266.
Li, L., Ji, X., and Chen, K. (2022). Conductive, self-healing, and antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors. Journal of Biomaterials Applications, 37(7), 1169–1181.
Liu, H., Chen, X., Zheng, Y., Zhang, D., Zhao, Y., Wang, C., Pan, C., Liu, C., and Shen, C. (2021). Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Advanced Functional Materials, 31(13), 2008006.
Liu, Z., Zhang, Y., Song, Y., Lu, Y., Liu, T., and Zhang, J.-C. (2023). A wearable 3D pressure sensor based on electrostatic self-assembly MXene/chitosan sponge and insulating PVP spacer. Nanotechnology, 34(45), 455502.
Luan, H., Zhang, D., Xu, Z., Zhao, W., Yang, C., and Chen, X. (2022). MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. Journal of Materials Chemistry C, 10(19), 7604–7613.
Malik, R., Parida, R., Parida, B. N., and Nayak, N. C. (2022). Structural, thermal and dielectric properties of 2D layered Ti3C2Tx (MXene) filled poly (Ethylene‐co‐methyl Acrylate) (EMA) nanocomposites. Journal of Applied Polymer Science, 140(6), e53460.
Manibalan, K., and Chen, J. (2024). Recent progress on MXene–polymer composites for soft electronics applications in sensing and biosensing: A review. Journal of Materials Chemistry A, 12(40), 27130–27156.
Nandiyanto, A.B.D., Oktiani, R., and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97-118.
Nandiyanto, A.B.D., Ragadhita, R., and Fiandini, M. (2023). Interpretation of Fourier Transform Infrared Spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indonesian Journal of Science and Technology, 8(1), 113-126.
Obinna, E.N. (2022). Physicochemical properties of human hair using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscope (SEM). ASEAN Journal for Science and Engineering in Materials, 1(2), 71-74.
Qin, L., Tao, Q., Ghazaly, A. E., Fernández-Rodrı́guez, J., Persson, P. O. Å., Rosén, J., and Zhang, F. (2017). High‐performance ultrathin flexible solid‐state Supercapacitors based on solution processable Mo1.33C MXene and PEDOT: PSS. Advanced Functional Materials, 28(2), 1703808.
Ratwani, C. R., Demko, D., Bakhit, B., Kamali, A. R., and Abdelkader, A. M. (2024). Tuning surface terminations and hydration interactions in MXene nanosheet-based hydrogel composites for self-healable strain sensors. ACS Applied Nano Materials, 7(17), 20196–20205.
Ren, J., Huang, X., Han, R., Chen, G., Zhou, Z., and Li, Q. (2023). An extreme condition-resistant superelastic silica nanofiber/MXene composite aerogel for synchronous sensing and thermal management. Journal of Materials Chemistry A, 11(19), 10396–10412.
Ren, S., Pan, X., Zhang, Y., Xu, J., Liu, Z., Zhang, X., Li, X., Gao, X., Zhong, Y., Chen, S., and Wang, S. (2024). Conductive MXene/polymer composites for transparent flexible supercapacitors. Small, 20(35), 2401346.
Ren, Z., Guo, F., Wen, Y., Yang, Y., Liu, J., and Cheng, S. (2024). Strong and anti-swelling nanofibrous hydrogel composites inspired by biological tissue for amphibious motion sensors. Materials Horizons, 11(22), 5600–5613.
Su, Y., Ma, K., Mao, X., Liu, M., and Zhang, X. (2022). Highly Compressible and sensitive flexible piezoresistive pressure sensor based on MWCNTs/Ti3C2Tx MXene @ melamine foam for human gesture monitoring and recognition. Nanomaterials, 12(13), 2225.
Sukamto, S., and Rahmat, A. (2023). Evaluation of FTIR, macro and micronutrients of compost from black soldier fly residual: In context of its use as fertilizer. ASEAN Journal of Science and Engineering, 3(1), 21-30.
Tao, D., Yang, C., Chen, C., Kun, Y., You, H., Wang, W., and Wang, D. (2024). Highly flexible and ultralight PVA‐co‐PE‐AgNW/MXene composite film with low filling for multistage electromagnetic interference shielding. Small, 21(7), 2411752.
Tomaszewski, P. E. (2023). Comments on the paper “How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method” by Siti Fatimah et al. published in ASEAN Journal of Science and Engineering 2 (2022) 65. ASEAN Journal of Science and Engineering, 3(3), 301-304.
Wan, Y., Xiong, P., Liu, J., Feng, F., Xun, X., Gama, M., Zhang, Q., Yao, F., Yang, Z., Luo, H., and Xu, Y. (2021). Ultrathin, strong, and highly flexible Ti3C2Tx MXene/bacterial cellulose composite films for high-performance electromagnetic interference shielding. ACS Nano, 15(5), 8439–8449.
Wang, G., Yang, Z., Li, L., Ren, J., Liu, J., and Li, L. (2024). Self-assembled MXene@Fluorographene hybrid for high dielectric constant and low loss ferroelectric polymer composite films. ACS Applied Materials and Interfaces, 16(19), 25268–25279.
Wang, J., Ma, X., Zhou, J., Du, F., and Teng, C. (2022). Bioinspired, high-strength, and flexible mxene/aramid fiber for electromagnetic interference shielding papers with joule heating performance. ACS Nano, 16(4), 6700–6711.
Wang, P., Jian, M., Zhang, C., Wu, M., Ling, X., Zhang, J., Wei, B., and Yang, L. (2021). Highly stable graphene‐based flexible hybrid transparent conductive electrodes for organic solar cells. Advanced Materials Interfaces, 9(3), 2101442.
Weng, G., Li, J., Alhabeb, M., Karpovich, C., Wang, H., Lipton, J., Maleski, K., Kong, J., Shaulsky, E., Elimelech, M., Gogotsi, Y., and Taylor, A. D. (2018). Layer‐by‐layer assembly of cross‐functional semi‐transparent MXene‐carbon nanotubes composite films for next‐generation electromagnetic interference shielding. Advanced Functional Materials, 28(44), 1803360.
Xu, H., Chen, G., Du, F., Wang, X., Dall’Agnese, Y., and Gao, Y. (2022). Electrospun Ti3C2Tx MXene and silicon embedded in carbon nanofibers for lithium-ion batteries. Journal of Physics D Applied Physics, 55(20), 204002.
Xue, H., Huang, P., Göthelid, M., Strömberg, A., Niklaus, F., and Li, J. (2024). Ultrahigh‐rate on‐paper PEDOT:PSS‐Ti2C microsupercapacitors with large areal capacitance. Advanced Functional Materials, 34(49), 2409210.
Yan, S., Zhang, H., Li, L., Fu, Q., and Ge, X. (2024). Flexible and recyclable MXene nanosheet/Ag nanowire/cellulose nanocrystal composite films for electromagnetic interference shielding. ACS Applied Nano Materials, 7(3), 2702–2710.
Yolanda, Y.D., and Nandiyanto, A.B.D. (2022). How to read and calculate diameter size from electron microscopy images. ASEAN Journal of Science and Engineering Education, 2(1), 11-36.
Yu, Q., Su, C., Bi, S., Huang, Y., Li, J., Shao, H., Jiang, J., and Chen, N. (2022). Ti3C2Tx@nonwoven fabric composite: Promising MXene-coated fabric for wearable piezoresistive pressure sensors. ACS Applied Materials and Interfaces, 14(7), 9632–9643.
Zhan, Z., Song, Q., Zhou, Z., and Lu, C. (2019). Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry C, 7(32), 9820–9829.
Zhang, K., Sun, J., Song, J., Gao, C., Wang, Z., Song, C., Wu, Y., and Liu, Y. (2020). Self-healing Ti3C2 MXene/PDMS supramolecular elastomers based on small biomolecules modification for wearable sensors. ACS Applied Materials and Interfaces, 12(40), 45306–45314.
Zhang, P., Li, Y., Zhang, H., Li, Y., Yin, X., Zheng, W., Ding, J., and Sun, Z. (2024). Microporous tungsten oxide spheres coupled with Ti3C2Tx nanosheets for high-volumetric capacitance supercapacitors. Nanotechnology, 35(49), 495401.
Zhang, P., Sui, Y., Ma, W., Duan, N., Liu, Q., Zhang, B., Niu, H., and Qin, C. (2023). Tightly intercalated Ti3C2Tx/MoO3−x/Pedot:PSS Free-standing films with high volumetric/gravimetric performance for flexible solid-state supercapacitors. Dalton Transactions, 52(3), 710–720.
Zhang, S., Ying, H., Huang, P., Wang, J., Zhang, Z., Zhang, Z., and Han, W. (2021). Ultrafine Sb pillared few-layered Ti3C2Tx MXenes for advanced sodium storage. ACS Applied Energy Materials, 4(9), 9806–9815.
Zhang, X., Sun, H., Zhang, J., and Wang, Z. (2024). A Highly sensitive and stable mxene/bacterial cellulose double network hydrogel flexible strain sensor for human activities monitoring. Journal of Applied Polymer Science, 142(6), e56468.
Zhang, Y., Chang, T., Jing, L., Li, K., Yang, H., and Chen, P. (2020). Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition. ACS Applied Materials and Interfaces, 12(7), 8392–8402.
Zheng, Z., Song, S., Chen, X., Li, X., and Li, J. (2025). Ultra-stretchable polymer fibers anchored with a triple-level self-assembled conductive network for wide-range strain detection. Polymers, 17(6), 734.
Zhou, J., Yu, J., Shi, L., Wang, Z., Liu, H., Yang, B., Li, C., Zhu, C., and Xu, J. (2018). A conductive and highly deformable all‐pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance. Small, 14(51), 1803786.
Article Metrics
Abstract View

Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Bumi Publikasi Nusantara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.