Thermal Enhancement of Ribbed Double Pipe Heat Exchangers Using Titanate Nanofluids for Advanced Heat Transfer Systems

(1) University of Basrah
(2) University of Basrah

Abstract
Keywords
References
Ahmed, M. H. (2022). Investigation of the heat transfer and pressure drop in tubes with transverse ribs of zigzag configurations. Applied Sciences, 12(11), 5734.
Al-Hajjaj, A., Zamora, B., Bavykin, D., Shah, A., Walsh, F., and Reguera, E. (2011). Sorption of hydrogen onto titanate nanotubes decorated with a nanostructured Cd3[Fe (CN)6]2 Prussian Blue analogue. International Journal of Hydrogen Energy, 37(1), 318–326.
Eiamsa-ard, S., and Promvonge, P. (2021). Multi-objective optimization of a loose-fit delta-wing twisted tape with TiO₂/water nanofluid in a heat exchanger. International Journal of Heat and Mass Transfer, 172, 121198.
Majeed, A. H., and Abd, Y. H. (2021). Performance of heat exchanger with nanofluids. Materials Science Forum, 1021, 160–170.
Murshed, S. S., and De Castro, C. N. (2014). Superior thermal features of carbon nanotubes-based nanofluids – A review. Renewable and Sustainable Energy Reviews, 37, 155–167.
Nandiyanto, A. B. D., Putri, S. R., Ragadhita, R., and Kurniawan, T. (2022). Design of heat exchanger for the production of carbon particles. Journal of Engineering Science and Technology, 17(4), 2788-2798.
Nandiyanto, A. B. D., Putri, S. R., Ragadhita, R., Maryanti, R., and Kurniawan, T. (2021). Design of heat exchanger for the production of synthesis silica. Journal of Engineering Research.
Nandiyanto, A. B. D., Ragadhita, R., and Kurniawan, T. (2022). Shell and tube heat exchanger design for titanium dioxide particle production process. Journal of Engineering Science and Technology, 17(5), 3224-3233.
Nugraha, A. S., and Nandiyanto, A. B. D. (2021). Design of shell and tube heat exchanger for magnetite (Fe3O4) particle production process. Indonesian Journal of Multidiciplinary Research, 3(1), 1-10.
Olabi, A., Wilberforce, T., Sayed, E. T., Elsaid, K., Rahman, S. A., and Abdelkareem, M. A. (2021). Geometrical effect coupled with nanofluid on heat transfer enhancement in heat exchangers. International Journal of Thermofluids, 10, 100072.
Prajapati, Y. K., Pathak, M., and Khan, M. K. (2015). A comparative study of flow boiling heat transfer in three different configurations of microchannels. International Journal of Heat and Mass Transfer, 85, 711–722.
Ragadhita, R., and Nandiyanto, A. B. D. (2024). How to calculate and design shell and tube-type heat exchanger with a single heat transfer. ASEAN Journal for Science and Engineering in Materials, 3(1), 21-42.
Ragadhita, R., and Nandiyanto, A. B. D. (2024). How to calculate and design shell and tube-type heat exchanger with a single heat transfer. ASEAN Journal for Science and Engineering in Materials, 3(1), 21-42.
Saeed, L., and Qasim, M. (2023). Thermal performance of ribbed tube using hybrid MXene + Al₂O₃ nanofluid: An experimental study. Heliyon, 9(7), e16467.
Tiwari and Das, S. K., Putra, N., Thiesen, P., and Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567–574.
Zheng, N., Liu, P., Shan, F., Liu, Z., and Liu, W. (2015). Effects of rib arrangements on the flow pattern and heat transfer in an internally ribbed heat exchanger tube. International Journal of Thermal Sciences, 101, 93–105.
Article Metrics
Abstract View

Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Bumi Publikasi Nusantara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.