Experimental and Bibliometric Analysis of Truncated Cone Fouling Suppression Device for Vortex-Induced Vibration Control in Marine Structures
), Wan Mohd Norsani Wan Nik(2), Ahmad Hussain(3), Lee Kee Quen(4), Nur Najahatul Huda Saris(5), Suriani Mat Jusoh(6), Fakhratul Ridwan Zulkifli(7),
(1) Universiti Utara Malaysia
(2) Universiti Malaysia Terengganu
(3) DHA Suffa University
(4) Universiti Teknologi Malaysia
(5) Universiti Teknologi Malaysia
(6) Universiti Malaysia Terengganu
(7) Universiti Malaysia Terengganu
Corresponding Author
Abstract
Keywords
References
Assi, G. R. S., Bearman, P. W., and Kitney, N. (2009). Low drag solutions for suppressing vortex-induced vibration of circular cylinders. Journal of Fluids and Structures, 25, 666–675.
Assi, G. R. S., Bearman, P. W., Kitney, N., and Tognarelli, M. A. (2010). Suppression of wake-induced vibration of tandem cylinders with free-to-rotate control plates. Journal of Fluids and Structures, 26, 1045–1057.
Bearman, P., and Branković, M. (2003). Experimental studies of passive control of vortex-induced vibration. European Journal of Mechanics - B/Fluids, 23(1), 9–26.
Cicolin, M. M., and Assi, G. R. S. (2017). Experiments with flexible shrouds to reduce the vortex-induced vibration of a cylinder with low mass and damping. Applied Ocean Research, 65, 290–301.
Clark, P. J., and Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445–453.
Edmonds, M., Brett, A., Herd, R. A., Humphreys, M. C. S., and Woods, A. (2015). Magnetite-bubble aggregates at mixing interfaces in andesite magma bodies. Special Publications, 410, 7–15.
Gao, Y., Fu, S., Ma, L., and Chen, Y. (2014). Experimental investigation of the response performance of VIV on a flexible riser with helical strakes. Ships and Offshore Structures, 11(2), 113–128.
Gao, Y., Zong, Z., Zou, L., and Jiang, Z. (2018). Effect of surface roughness on vortex-induced vibration response of a circular cylinder. Ships and Offshore Structures, 13(1), 28–42.
Gomez-Banderas, J. (2022). Marine natural products: A promising source of environmentally friendly antifouling agents for the maritime industries. Frontiers in Marine Science, 9, 858757.
Gonçalves, R. T., Rosetti, G. F., Franzini, G. R., Meneghini, J. R., and Fujarra, A. L. C. (2013). Two-degree-of-freedom vortex-induced vibration of circular cylinders with very low aspect ratio and small mass ratio. Journal of Fluids and Structures, 39, 237–257.
Harandi, M., Tamimi, V., Zeinoddini, M., Rashki, M., and Ashrafipour, H. (2024). Effects of soft marine growth on vortex-induced vibration: A comparative analysis with hard marine growth. Applied Ocean Research, 149, 103906.
Idora, M. N., Ferry, M., Nik, W. W., and Jasnizat, S. (2015). Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Progress in Organic Coatings, 81, 125–131.
Jiménez-González, J. I., and Huera-Huarte, F. (2018). Vortex-induced vibrations of a circular cylinder with a pair of control rods of varying size. Journal of Sound and Vibration, 431, 163–178.
Khalak, A., and Williamson, C. H. K. (1999). Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures, 13, 813–851.
Korkischko, I., and Meneghini, J. R. (2010). Experimental investigation of flow-induced vibration on isolated and tandem circular cylinders fitted with strakes. Journal of Fluids and Structures, 26(4), 611–620.
Law, Y., and Jaiman, R. (2018). Passive control of vortex-induced vibration by spanwise grooves. Journal of Fluids and Structures, 81, 289–302.
Li, P., Liu, L., Dong, Z., Wang, F., and Guo, H. (2020). Investigation on the spoiler vibration suppression mechanism of discrete helical strakes of deep-sea riser undergoing vortex-induced vibration. International Journal of Mechanical Sciences, 172, 105410.
Li, X., Peng, Y. X., Liu, N. N., and Sun, P. N. (2025). Experimental and numerical study on vibration suppression mechanism of vortex induced vibration in riser. Ocean Engineering, 329, 121098.
Liao, W., Huang, Z., Sun, H., Huang, X., Gu, Y., Chen, W., Zhang, Z., and Kan, J. (2023). Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting. Energy, 284, 128264.
Lu, Y., Yu, Z., Liu, Y., and Xu, W. (2023). Fatigue damage characteristics of a flexible cylinder under concomitant excitation of time-varying axial tension and VIV. Ocean Engineering, 266, 116079.
Modir, A., and Goudarzi, N. (2018). Experimental investigation of Reynolds number and spring stiffness effects on vortex-induced vibrations of a rigid circular cylinder. European Journal of Mechanics - B/Fluids, 74, 34–47.
Park, H., Kumar, R. A., and Bernitsas, M. M. (2015). Suppression of vortex-induced vibrations of rigid circular cylinder on springs by localized surface roughness at 3×10⁴ ≤ Re ≤ 1.2×10⁵. Ocean Engineering, 111, 218–230.
Quen, L. K., Abu, A., Kato, N., Muhamad, P., Sahekhaini, A., and Abdullah, H. (2014). Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser. Applied Ocean Research, 44, 82–91.
Rabiee, A., and Esmaeili, M. (2020). Simultaneous vortex- and wake-induced vibration suppression of tandem-arranged circular cylinders using active feedback control system. Journal of Sound and Vibration, 469, 115131.
Ramzi, N. A. S., Quen, L. K., Senga, H., Kang, H. S., Lim, M. H., and Sukarnoor, N. I. M. (2022). Suppression of vortex-induced vibration of a rigid cylinder using flexible shrouding. Applied Ocean Research, 123, 103154.
Ran, Y., Deng, Z., Yu, H., Chen, W., and Gao, D. (2023). Review of passive control of flow past a circular cylinder. Journal of Visualization, 26(1), 1–44.
Shaharuddin, N. M. R., and Darus, I. Z. M. (2015). Experimental study of vortex-induced vibrations of flexibly mounted cylinder in circulating water tunnel. Acta Mechanica, 226(11), 3795–3808.
Song, J., Chen, W., Guo, S., and Yan, D. (2021). Study on suppressing the vortex-induced vibration of flexible riser in frequency domain. Applied Ocean Research, 112, 102882.
Sukarnoor, N., Quen, L., Abu, A., Kuwano, N., Hooi-Siang, K., and Desa, S. (2021). The effectiveness of helical strakes in suppressing vortex-induced vibration of tandem circular cylinders. Ain Shams Engineering Journal, 12(5), 467–478.
Sun, X., Suh, C. S., Ye, Z. H., and Yu, B. (2020). Dynamics of a circular cylinder with an attached splitter plate in laminar flow: A transition from vortex-induced vibration to galloping. Physics of Fluids, 32(2), 1–14.
Wang, W., Mao, Z., Song, B., and Tian, W. (2021). Suppression of vortex-induced vibration of a cactus-inspired cylinder near a free surface. Physics of Fluids, 33(6), 1–12.
Wang, Y., Li, P., Zhang, Y., Liu, Z., Ren, X., Zhu, L., and Dong, S. (2024). Vibration suppression performance evolution process of helical straked riser under coupled interference effect. Applied Ocean Research, 149, 104040.
Wu, R., Liu, J., Qu, J., and Guo, A. (2024). Vortex-induced vibration suppression of cactus-like cylinders. Ocean Engineering, 284, 117201.
Yong, R., Quen, L. K., Ken, T. L., Yak, X. C., Kang, H. S., and Wong, K. (2025). Experimental investigation on the suppression of vortex-induced vibration of a rigid cylinder using axial slats. Ocean Engineering, 338, 121934.
Zhao, M. (2023). A review of recent studies on the control of vortex-induced vibration of circular cylinders. Ocean Engineering, 285, 115389.
Zhu, H., Li, Y., Hao, H., Alam, M., Zhou, T., and Tang, T. (2024). Experimental investigation on the vortex-induced vibration of a circular cylinder partially covered with moss. Ocean Engineering, 285, 117198.
Zou, J., Zhou, B., Liu, H., Yi, W., Lu, C., and Luo, W. (2024). Numerical study of vortex-excited vibration of flexible cylindrical structures with surface bulge. Journal of Marine Science and Engineering, 12(11), 1894.
Article Metrics
Abstract View
: 29 times
Download : 18 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Bumi Publikasi Nusantara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.







