



# How to Read and Interpret FTIR Spectra for Materials: A Master Dataset with Step-by-Step Guided Peak-Correlation Analysis, Representative Examples, and a Foundation for Future Artificial Intelligence (AI)-Assisted Analysis

Asep Bayu Dani Nandiyanto

Universitas Pendidikan Indonesia, Bandung, Indonesia

Correspondence: E-mail: [nandiyanto@upi.edu](mailto:nandiyanto@upi.edu)

## ABSTRACT

Fourier Transform Infrared (FTIR) spectroscopy is widely used for materials characterization; however, spectrum interpretation often relies on isolated peak identification, which can lead to ambiguity, especially for complex materials. This study presents a master FTIR dataset combined with a step-by-step guided peak-correlation workflow to support systematic and reproducible FTIR interpretation. The dataset organizes FTIR information into five spectral regions and emphasizes correlated peak families rather than individual bands. Representative examples covering simple compounds, organic compounds, polymers, and halogenated materials demonstrate the applicability of the approach across materials science and chemical engineering fields. Beyond manual interpretation, the structured dataset and workflow are designed to be machine-readable and extensible, enabling future integration with data-driven methods such as artificial intelligence (AI) and machine learning (ML) for automated spectral analysis. This work provides a practical reference for FTIR interpretation, education, and the development of intelligent materials characterization systems.

## ARTICLE INFO

### Article History:

Submitted/Received 02 Oct 2025

First Revised 20 Nov 2025

Accepted 12 Jan 2026

First Available online 13 Jan 2026

Publication Date 01 Sep 2026

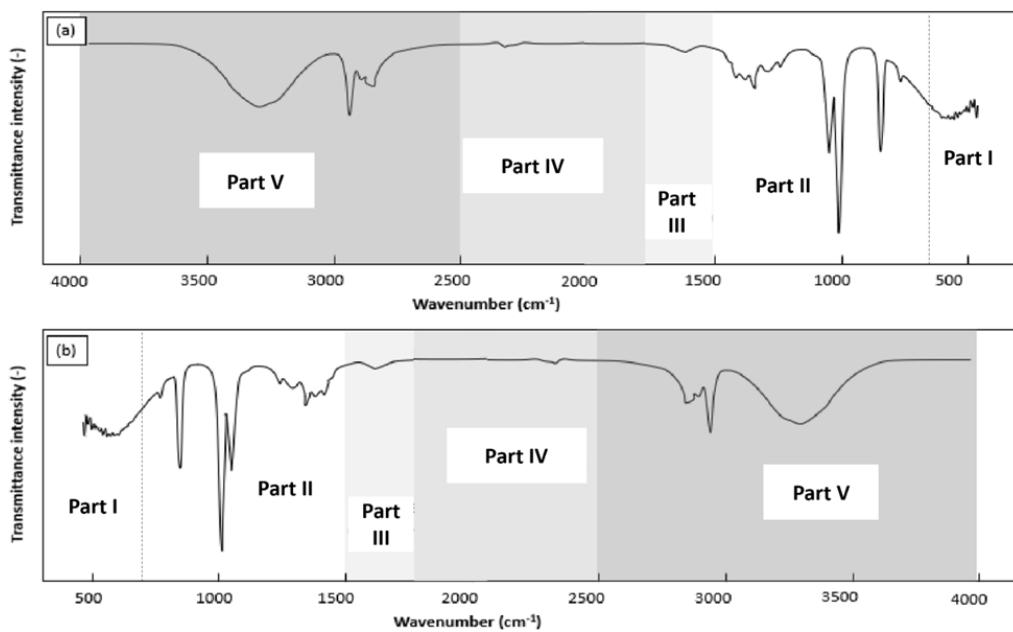
### Keyword:

Artificial intelligence,  
Chemistry,  
Dataset,  
FTIR,  
Materials,  
Organic.

## 1. INTRODUCTION

Fourier Transform Infrared (FTIR) spectroscopy is widely used for materials characterization due to its rapid and non-destructive identification of molecular structure and chemical bonding (Al-Amin *et al.*, 2025; Zhang *et al.*, 2021; Barnes *et al.*, 2023). However, FTIR spectra are commonly interpreted through isolated peak assignment, which often leads to ambiguity when applied to complex organic, inorganic, or hybrid materials. In practice, FTIR absorptions frequently occur as correlated peak families across multiple spectral regions rather than as independent features. Many reports regarding the FTIR concept and analysis have been well-documented (Berthoumieu & Hienerwadel, 2009; Bacsik *et al.*, 2004; Schmitt & Flemming, 1998).

To address this limitation, based on our previous studies on FTIR analysis (Nandiyanto *et al.*, 2019; Nandiyanto *et al.*, 2023; Nandiyanto *et al.*, 2024a; Nandiyanto *et al.*, 2024b), this study introduces a master FTIR dataset combined with a step-by-step guided peak-correlation framework that enables systematic interpretation across the full FTIR range (400–4000  $\text{cm}^{-1}$ ). The novelty of this work lies in organizing FTIR information into correlated peak families with explicit interpretative roles, transforming expert-based interpretation into a reproducible workflow. In addition to supporting manual analysis and education, the structured dataset is designed for future applications, especially providing a foundation for future data-driven and artificial intelligence (AI)-assisted FTIR interpretation in materials science and engineering.


## 2. CONCEPTUAL FRAMEWORK OF PEAK-CORRELATION IN FTIR

FTIR absorption bands arise from molecular vibrations that are directly related to molecular structure and bonding. Consequently, functional groups typically produce correlated absorptions across multiple spectral regions, forming peak families rather than isolated bands. Interpreting FTIR spectra based solely on individual peak assignment may therefore lead to ambiguity, particularly for complex materials with overlapping or heterogeneous components.

To overcome this limitation, this study adopts a peak-correlation framework in which FTIR spectra are interpreted by identifying related absorptions across the spectrum. The FTIR range is conceptually divided into five interconnected regions, each with a distinct interpretative role, as summarized in **Table 1** and illustrated in **Figure 1**. Within this framework, no single region is interpreted independently; reliable interpretation emerges from consistent peak families observed across regions. This concept provides the basis for the master dataset and the step-by-step interpretation workflow presented in this study.

**Table 1.** Conceptual division of FTIR spectral regions used in the master dataset.

| PART     | Wavenumber range (cm <sup>-1</sup> ) | Region name                                            | Primary interpretative function                           | Typical information extracted                                                                      |
|----------|--------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| PART I   | 400–700                              | Low-frequency / heavy-atom region                      | Final confirmation of heavy atoms and low-frequency modes | Halogen (C–Cl, C–Br, C–I), sulfur species (S–S, C–S), low-frequency out-of-plane vibrations        |
| PART II  | 700–1500                             | Fingerprint region                                     | Structural validation and backbone confirmation           | C–O, C–N, P–O, S–O, Si–O stretching; skeletal vibrations; aromatic and aliphatic backbone patterns |
| PART III | 1500–1800                            | Double-bond region                                     | Identification of major functional groups                 | C=C, C=O, amide bands, aromatic skeletal vibrations                                                |
| PART IV  | 1800–2500                            | Triple-bond and cumulative multiple-bond region        | Detection of highly diagnostic, sharp absorptions         | C≡C, C≡N, N=C=O, NCS, CO <sub>2</sub> , metal carbonyls                                            |
| PART V   | 2500–4000                            | High-frequency single-bond and hydrogen-related region | Rapid assessment of material type and hydrogen bonding    | C–H, O–H, N–H stretching; hydrogen bonding effects                                                 |



**Figure 1.** Conceptual illustration of the FTIR spectrum divided into five interconnected regions (PART I–V), highlighting the peak-correlation framework and the integration of peak families across spectral regions for systematic FTIR interpretation: (a) the sequence from 4,000 to 400 cm<sup>-1</sup> and (b) the sequence from 400 to 4,000 cm<sup>-1</sup>. The figure was adopted from reference ([Nandiyoanto et al., 2023](#)). This figure was selected to verify that the interpretation results obtained using the proposed step-by-step peak-correlation framework are consistent with those reported in the reference.

### 3. MASTER FTIR DATASET

The master FTIR dataset organizes characteristic absorption bands into five interconnected spectral regions (PART I–V), each with a distinct interpretative role, enabling spectrum interpretation based on correlated peak families rather than isolated bands. Each entry includes the wavenumber range, functional group assignment, peak characteristics, companion peaks, and material classification. The dataset was adopted from the literature (Nandiyanto *et al.*, 2019).

In general, PART I (400–700  $\text{cm}^{-1}$ ) covers low-frequency vibrations involving heavy atoms and out-of-plane modes, providing final confirmation for halogens, sulfur-containing groups, and related signatures (**Table 2**). PART II (700–1500  $\text{cm}^{-1}$ ) represents the fingerprint region, capturing backbone and heteroatom vibrations (e.g., C–O, C–N, P–O, S–O, Si–O) that validate structural assignments through pattern consistency (**Table 3**). The multiple-bond region is divided into PART III (1500–1800  $\text{cm}^{-1}$ ), which includes C=C, C=O, amide, and aromatic skeletal vibrations critical for functional group identification (**Table 4**), and PART IV (1800–2500  $\text{cm}^{-1}$ ), which contains sharp and highly diagnostic triple-bond and cumulative multiple-bond absorptions (**Table 5**). PART V (2500–4000  $\text{cm}^{-1}$ ) captures single-bond and hydrogen-related stretching modes, providing rapid insight into material type and hydrogen bonding (**Table 6**).

Together, these five regions form an integrated dataset that supports step-by-step FTIR interpretation through peak correlation, forming the basis of the guided workflow described in the following sections.

**Table 2.** Master FTIR Dataset – PART I (400–700 cm<sup>-1</sup>): Low-frequency and heavy-atom region. The dataset was adopted and restructured from the literature (Nandiyanto *et al.*, 2019).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment                             | Peak characteristic                 | Companion peak(s) / correlated region(s)                   | Classification                       |
|--------------------------------|---------------------------------------------------------|-------------------------------------|------------------------------------------------------------|--------------------------------------|
| 430–500                        | Aryl disulfide (S–S stretching)                         | Narrow to medium, often overlapping | 600–700 (C–S stretching)                                   | Thiols & sulfur-containing compounds |
| 470–500                        | Polysulfide (S–S stretching)                            | Narrow, multiple weak peaks         | 500–700 (S–S / C–S cluster)                                | Thiols & sulfur-containing compounds |
| 500–600                        | Aliphatic iodo compounds (C–I stretching)               | Narrow                              | 2850–2950 (aliphatic C–H stretching)                       | Aliphatic organohalogen compounds    |
| 570–705                        | Disulfide (C–S stretching)                              | Medium, overlapping                 | 430–500 (S–S stretching)                                   | Thiols & sulfur-containing compounds |
| 590–720                        | Alcohol O–H out-of-plane bending                        | Broad                               | 3200–3600 (O–H stretching)                                 | Alcohol & hydroxy compounds          |
| 600–620                        | Disulfide (S–S stretching)                              | Narrow                              | 570–705 (C–S stretching)                                   | Thiols & sulfur-containing compounds |
| 600–700                        | Aliphatic bromo compounds (C–Br stretching)             | Narrow                              | 2850–2950 (aliphatic C–H stretching)                       | Aliphatic organohalogen compounds    |
| 610–680                        | Alkyne C–H bending                                      | Narrow                              | 2100–2140 (C≡C stretching); 3310–3320 (≡C–H stretching)    | Acetylenic (alkyne) compounds        |
| 630                            | Alkyne C–H bending (typical band)                       | Sharp, narrow                       | 2100–2140 (C≡C stretching)                                 | Acetylenic (alkyne) compounds        |
| 630–660                        | Thioether (CH <sub>3</sub> –S–, C–S stretching)         | Narrow to medium                    | 430–500 (S–S stretching); 2850–2950 (C–H stretching)       | Thiols & sulfur-containing compounds |
| 670–715                        | Aryl thioether (Ø–S, C–S stretching)                    | Medium, overlapping                 | 1500–1600 (aromatic C=C stretching)                        | Thiols & sulfur-containing compounds |
| 670–900                        | Aromatic C–H out-of-plane bending                       | Multiple sharp peaks                | 1500–1600 (aromatic C=C); 3000–3100 (aromatic C–H stretch) | Aromatic ring compounds              |
| 680–610                        | Sulfate ion (secondary band)                            | Broad to medium                     | 1080–1130 (sulfate main stretching band)                   | Inorganic ions                       |
| 685–710                        | Thiol / thioether (CH <sub>2</sub> –S–, C–S stretching) | Medium                              | 430–500 (S–S stretching); 600–700 (C–S region)             | Thiols & sulfur-containing compounds |
| 690–710                        | Aromatic C–H monosubstitution (phenyl)                  | Sharp, diagnostic                   | 700–900 (substitution pattern); 1500–1600 (aromatic C=C)   | Aromatic ring compounds              |
| 700                            | cis-C–H out-of-plane bending                            | Narrow                              | 1620–1680 (C=C stretching); 3010–3040 (≡C–H stretching)    | Olefinic (alkene) compounds          |

**Table 2 (continue).** Master FTIR Dataset – PART I (400–700 cm<sup>-1</sup>): Low-frequency and heavy-atom region. The dataset was adopted and restructured from the literature (Nandiyanto *et al.*, 2019).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment                                  | Peak characteristic | Companion peak(s) / correlated region(s)                                   | Classification                    |
|--------------------------------|--------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|-----------------------------------|
| 700–800                        | Aliphatic chloro compounds (C–Cl stretching)                 | Narrow              | 2850–2950 (aliphatic C–H stretching)                                       | Aliphatic organohalogen compounds |
| 700–1300                       | Skeletal C–C vibrations                                      | Broad, overlapping  | 2850–2950 (aliphatic C–H stretching)                                       | Saturated aliphatic compounds     |
| 720–750                        | Methylene –(CH <sub>2</sub> ) <sub>n</sub> – rocking (n ≥ 3) | Narrow              | 2850–2950 (long-chain C–H stretching); 1445–1485 (CH <sub>2</sub> bending) | Saturated aliphatic compounds     |

**Table 3.** Master FTIR Dataset – PART II (700–1500 cm<sup>-1</sup>): Fingerprint and heteroatom backbone region. The dataset was adopted and restructured from the literature (Nandiyanto *et al.*, 2019).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment                                  | Peak characteristic | Companion peak(s) / correlated region(s)                               | Classification                |
|--------------------------------|--------------------------------------------------------------|---------------------|------------------------------------------------------------------------|-------------------------------|
| 700–900                        | Aromatic C–H out-of-plane bending (substitution patterns)    | Sharp, multiple     | 1500–1600 (aromatic C=C); 3000–3100 (aromatic C–H stretch)             | Aromatic ring compounds       |
| 720–750                        | Methylene –(CH <sub>2</sub> ) <sub>n</sub> – rocking (n ≥ 3) | Narrow, diagnostic  | 2850–2950 (aliphatic C–H stretch); 1445–1485 (CH <sub>2</sub> bending) | Saturated aliphatic compounds |
| 735–770                        | Aromatic C–H ortho-disubstitution                            | Sharp               | 700–900 (out-of-plane (oop) pattern); 1500–1600 (aromatic C=C)         | Aromatic ring compounds       |
| 750–810                        | Aromatic C–H meta-disubstitution                             | Sharp               | 700–900 (out-of-plane (oop) pattern); 1500–1600 (aromatic C=C)         | Aromatic ring compounds       |
| 800–860                        | Aromatic C–H para-disubstitution                             | Sharp               | 700–900 (out-of-plane (oop) pattern); 1500–1600 (aromatic C=C)         | Aromatic ring compounds       |
| 820–890                        | Peroxide C–O–O stretching                                    | Weak to medium      | 1050–1150 (C–O stretch); Raman-active confirmation                     | Ether & oxy compounds         |
| 840–815                        | Nitrate ion (secondary band)                                 | Medium              | 1350–1380 (nitrate main band)                                          | Inorganic ions                |
| 860–900                        | Aromatic C–H meta-disubstitution (secondary)                 | Sharp               | 1500–1600 (aromatic C=C)                                               | Aromatic ring compounds       |
| 880–860                        | Carbonate ion (secondary band)                               | Medium              | 1410–1490 (carbonate main band)                                        | Inorganic ions                |
| 900–1000                       | Silicate ion stretching                                      | Broad               | 1000–1100 (Si–O main band)                                             | Inorganic ions                |

**Table 3 (continue).** Master FTIR Dataset – PART II (700–1500 cm<sup>-1</sup>): Fingerprint and heteroatom backbone region. The dataset was adopted and restructured from the literature ([Nandiyanto et al., 2019](#)).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment                 | Peak characteristic   | Companion peak(s) / correlated region(s)                        | Classification                    |
|--------------------------------|---------------------------------------------|-----------------------|-----------------------------------------------------------------|-----------------------------------|
| 925–1005                       | Cyclohexane ring vibrations                 | Medium                | 2850–2950 (aliphatic C–H); 700–1300 (C–C backbone)              | Saturated aliphatic compounds     |
| 950–1225                       | Aromatic C–H in-plane bending               | Multiple, overlapping | 700–900 (out-of-plane (oop) aromatic); 1500–1600 (aromatic C=C) | Aromatic ring compounds           |
| 990–1050                       | Aliphatic phosphate (P–O–C stretching)      | Medium                | 1250–1350 (P=O stretch)                                         | Phosphorus-oxy compounds          |
| 1000–1055                      | Cyclohexane skeletal vibrations             | Medium                | 700–1300 (C–C backbone); 2850–2950 (C–H stretch)                | Saturated aliphatic compounds     |
| 1000–1100                      | Silicate/phosphate ion stretching           | Broad                 | 900–1000 (secondary silicate); 1250–1350 (P=O)                  | Inorganic ions                    |
| 1000–1150                      | Aliphatic fluoro compounds (C–F stretching) | Medium to strong      | 2850–2950 (aliphatic C–H)                                       | Aliphatic organohalogen compounds |
| 1020–1090                      | Primary amine C–N stretching                | Medium                | 3300–3500 (N–H stretch); 1590–1650 (N–H bending)                | Amine compounds                   |
| 1050                           | Primary alcohol C–O stretching              | Medium                | 3200–3600 (O–H stretch)                                         | Alcohol & hydroxy compounds       |
| 1050–1150                      | Alkyl ether C–O stretching                  | Medium                | 2810–2820 (–O–CH <sub>3</sub> C–H); 2850–2950 (C–H)             | Ether & oxy compounds             |
| 1070–1140                      | Cyclic ether (large ring) C–O stretching    | Medium                | ~1250 (epoxy/oxirane companion)                                 | Ether & oxy compounds             |
| 1080–1130                      | Sulfate ion (main band)                     | Broad, intense        | 680–610 (secondary sulfate band)                                | Inorganic ions                    |
| 1080–1110                      | Organic siloxane (Si–O–C stretching)        | Medium                | 1020–1055 (Si–O–Si); 1000–1100 (Si–O)                           | Silicon-oxy compounds             |
| 1100                           | Secondary alcohol C–O stretching            | Medium                | 3200–3600 (O–H stretch)                                         | Alcohol & hydroxy compounds       |
| 1130–1190                      | Secondary amine C–N stretching              | Medium                | 3310–3360 (>N–H stretch)                                        | Amine compounds                   |
| 1150                           | Tertiary alcohol C–O stretching             | Medium                | Weak/absent O–H stretch (free alcohol)                          | Alcohol & hydroxy compounds       |
| 1150–1210                      | Tertiary amine C–N stretching               | Medium                | Absence of N–H stretch                                          | Amine compounds                   |
| 1190–1240                      | Aromatic phosphate (P–O–C stretching)       | Medium                | 1250–1350 (P=O stretch)                                         | Phosphorus-oxy compounds          |

**Table 3 (continue).** Master FTIR Dataset – PART II (700–1500 cm<sup>-1</sup>): Fingerprint and heteroatom backbone region. The dataset was adopted and restructured from the literature (Nandiyanto *et al.*, 2019).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment                      | Peak characteristic | Companion peak(s) / correlated region(s)           | Classification                |
|--------------------------------|--------------------------------------------------|---------------------|----------------------------------------------------|-------------------------------|
| 1200                           | Phenol C–O stretching                            | Medium              | 3530–3640 (phenolic O–H stretch)                   | Alcohol & hydroxy compounds   |
| 1225–1300                      | Skeletal C–C vibrations                          | Broad, overlapping  | 2850–2950 (aliphatic C–H stretch)                  | Saturated aliphatic compounds |
| 1230–1270                      | Aromatic ether (Ar–O stretching)                 | Medium              | 1500–1600 (aromatic C=C); 3000–3100 (aromatic C–H) | Ether & oxy compounds         |
| 1250                           | Epoxy/oxirane ring vibration                     | Medium              | 820–890 (epoxy companion band)                     | Ether & oxy compounds         |
| 1250–1350                      | Phosphate P=O stretching                         | Strong              | 990–1240 (P–O–C stretching)                        | Phosphorus-oxy compounds      |
| 1260–1350                      | O–H in-plane bending (primary/secondary alcohol) | Medium              | 3200–3600 (O–H stretch)                            | Alcohol & hydroxy compounds   |
| 1270–1285                      | Organic nitrate (secondary band)                 | Medium              | 1620–1640 (nitrate asymmetric band)                | Nitrogen-oxy compounds        |
| 1280–1350                      | Aromatic secondary amine C–N stretching          | Medium              | 1500–1600 (aromatic C=C); 3300–3500 (N–H)          | Amine compounds               |
| 1300–1335                      | Dialkyl/aryl sulfone stretching                  | Medium              | 1170–1135 (SO <sub>2</sub> symmetric band)         | Sulfur-oxy compounds          |
| 1310–1410                      | Phenol / tertiary alcohol O–H bending            | Broad               | 3200–3600 (O–H stretch)                            | Alcohol & hydroxy compounds   |
| 1320–1355                      | Nitro compound symmetric stretching              | Strong              | 1485–1555 (NO <sub>2</sub> asymmetric stretch)     | Nitrogen-oxy compounds        |
| 1340–1365                      | Sulfonate stretching                             | Medium              | 1100–1200 (S–O region)                             | Sulfur-oxy compounds          |
| 1350–1380                      | Nitrate ion (main band)                          | Strong              | 840–815 (secondary nitrate band)                   | Inorganic ions                |
| 1370–1420                      | Organic sulfate stretching                       | Medium              | 1080–1130 (sulfate main band)                      | Sulfur-oxy compounds          |
| 1380–1385                      | Methyl symmetric bending (–CH <sub>3</sub> )     | Medium              | 2850–2950 (C–H stretch)                            | Saturated aliphatic compounds |
| 1410–1490                      | Carbonate ion (main band)                        | Strong              | 880–860 (secondary carbonate band)                 | Inorganic ions                |
| 1410–1420                      | Vinyl C–H in-plane bending                       | Medium              | 1620–1680 (C=C stretch)                            | Olefinic (alkene) compounds   |
| 1430–1470                      | Methyl asymmetric bending (–CH <sub>3</sub> )    | Medium              | 2850–2970 (C–H stretch)                            | Saturated aliphatic compounds |

**Table 3 (continue).** Master FTIR Dataset – PART II (700–1500 cm<sup>-1</sup>): Fingerprint and heteroatom backbone region. The dataset was adopted and restructured from the literature ([Nandiyanto et al., 2019](#)).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment               | Peak characteristic | Companion peak(s) / correlated region(s)      | Classification                |
|--------------------------------|-------------------------------------------|---------------------|-----------------------------------------------|-------------------------------|
| <b>1445–1485</b>               | Methylene C–H bending (>CH <sub>2</sub> ) | Medium              | 2850–2950 (C–H stretch)                       | Saturated aliphatic compounds |
| <b>1450–1510</b>               | Aromatic ring skeletal stretching         | Medium              | 1580–1615 (aromatic C=C)                      | Aromatic ring compounds       |
| <b>1485–1555</b>               | Nitro compound asymmetric stretching      | Strong              | 1320–1355 (NO <sub>2</sub> symmetric stretch) | Nitrogen-oxy compounds        |

**Table 4.** Master FTIR Dataset – PART III (1500–1800 cm<sup>-1</sup>): Double-bond region. The dataset was adopted and restructured from the literature ([Nandiyanto et al., 2019](#)).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment                               | Peak characteristic | Companion peak(s) / correlated region(s)                                     | Classification                           |
|--------------------------------|-----------------------------------------------------------|---------------------|------------------------------------------------------------------------------|------------------------------------------|
| <b>1500–1510</b>               | Aromatic ring skeletal stretching                         | Medium              | 1580–1615 (aromatic C=C); 700–900 (aromatic C–H out-of-plane)                | Aromatic ring compounds                  |
| <b>1500–1650</b>               | Aromatic C=C stretching                                   | Medium sharp        | 3000–3100 (aromatic C–H stretching); to 700–900 (out-of-plane (oop) bending) | Aromatic ring compounds                  |
| <b>1510–1550</b>               | Nitro compound asymmetric stretching (–NO <sub>2</sub> )  | Strong, sharp       | 1320–1355 (NO <sub>2</sub> symmetric stretching)                             | Nitrogen-oxy compounds                   |
| <b>1550–1610</b>               | Carboxylate ion (COO <sup>-</sup> ) asymmetric stretching | Strong              | 1300–1420 (COO <sup>-</sup> symmetric stretching)                            | Carboxylate / carbonyl-related compounds |
| <b>1575–1630</b>               | Azo group (–N=N– stretching)                              | Medium              | Conjugated aromatic C=C bands (1500–1600)                                    | Nitrogen multiple-bond compounds         |
| <b>1580–1615</b>               | Aromatic ring C=C–C skeletal vibration                    | Sharp               | 700–900 (aromatic out-of-plane (oop)); 3000–3100 (aromatic C–H)              | Aromatic ring compounds                  |
| <b>1590–1690</b>               | Imino group (C=N stretching)                              | Medium              | 3300–3500 (=N–H stretching, if present)                                      | Nitrogen multiple-bond compounds         |
| <b>1600–1650</b>               | Conjugated C=C stretching (alkene/aromatic conjugation)   | Medium              | 3010–3040 (=C–H stretching)                                                  | Olefinic (alkene) compounds              |
| <b>1620–1640</b>               | Organic nitrate asymmetric stretching                     | Medium              | 1270–1285 (nitrate secondary band)                                           | Nitrogen-oxy compounds                   |
| <b>1620–1670</b>               | Unsaturated C=C (general)                                 | Medium              | 3010–3095 (=C–H stretching); 700–1000 (bending modes)                        | Unsaturated compounds                    |

**Table 4 (continue).** Master FTIR Dataset – PART III (1500–1800 cm<sup>-1</sup>): Double-bond region. The dataset was adopted and restructured from the literature (Nandiyanto *et al.*, 2019).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment                 | Peak characteristic | Companion peak(s) / correlated region(s)            | Classification              |
|--------------------------------|---------------------------------------------|---------------------|-----------------------------------------------------|-----------------------------|
| 1650                           | Olefinic C=C stretching                     | Sharp               | 3010–3040 (=C–H stretching)                         | Olefinic (alkene) compounds |
| 1650–1680                      | Amide I (C=O stretching)                    | Strong              | 1550–1650 (Amide II: N–H bending)                   | Amide compounds             |
| 1675–1690                      | Quinone or conjugated ketone C=O stretching | Strong              | Lower-frequency shift compared to saturated ketones | Carbonyl compounds          |
| 1700–1725                      | Carboxylic acid C=O stretching              | Strong, broad       | 2500–3300 (very broad O–H stretching)               | Carbonyl compounds          |
| 1705–1725                      | Ketone C=O stretching                       | Strong, sharp       | Absence of broad O–H stretching                     | Carbonyl compounds          |
| 1725–1740                      | Aldehyde C=O stretching                     | Strong              | 2700–2800 (aldehyde C–H stretching)                 | Carbonyl compounds          |
| 1725–1750                      | Ester C=O stretching                        | Strong              | 1000–1300 (C–O stretching)                          | Carbonyl compounds          |
| 1735                           | Six-membered ring lactone C=O               | Strong              | Characteristic fingerprint bands (1000–1300)        | Carbonyl compounds          |
| 1740–1760                      | Alkyl carbonate C=O stretching              | Strong              | 1050–1250 (C–O–C stretching)                        | Carbonate compounds         |
| 1770–1815                      | Acid (acyl) halide C=O stretching           | Strong              | 600–800 (C–X halogen stretching)                    | Carbonyl compounds          |
| 1775–1820                      | Aryl carbonate C=O stretching               | Strong              | 1500–1600 (aromatic C=C stretching)                 | Carbonate compounds         |
| 1820–1870                      | Anhydride C=O (high-frequency band)         | Strong doublet)     | (often 1775–1800 (second anhydride band)            | Carbonyl compounds          |

**Table 5.** Master FTIR Dataset – PART IV (1800–2500 cm<sup>-1</sup>): Triple-bond and cumulative multiple-bond region. The dataset was adopted and restructured from the literature (Nandiyanto *et al.*, 2019).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment                            | Peak characteristic        | Companion peak(s) / correlated region(s)                  | Classification                      |
|--------------------------------|--------------------------------------------------------|----------------------------|-----------------------------------------------------------|-------------------------------------|
| 1800–2100                      | Transition metal carbonyls (M–CO stretching)           | Strong, sharp              | Metal–ligand specific bands; environment-dependent shifts | Inorganic/organometallic compounds  |
| 1820–1870                      | Anhydride C=O (low-frequency band)                     | Strong (doublet component) | 1775–1800 (high-frequency anhydride band)                 | Carbonyl compounds                  |
| 1870–1800                      | Anhydride C=O (high-frequency band)                    | Strong (doublet component) | 1820–1870 (low-frequency anhydride band)                  | Carbonyl compounds                  |
| 1990–2150                      | Iothiocyanate (–NCS stretching)                        | Medium                     | 2100–2260 (C≡C / C≡N comparison region)                   | Nitrogen–sulfur compounds           |
| 2000–2200                      | Cyanide/thiocyanate ions                               | Medium to sharp            | Comparison with organic nitrile patterns                  | Inorganic ions                      |
| 2100–2140                      | Terminal alkyne C≡C stretching                         | Medium                     | 3310–3320 (≡C–H stretching)                               | Acetylenic (alkyne) compounds       |
| 2140–2175                      | Thiocyanate (–SCN stretching)                          | Medium                     | 2220–2240 (C≡N stretching)                                | Nitrogen–sulfur compounds           |
| 2190–2260                      | Medial (disubstituted) alkyne C≡C stretching           | Medium                     | Absence of ≡C–H stretching (3310–3320)                    | Acetylenic (alkyne) compounds       |
| 2220–2240                      | Aromatic nitrile (C≡N stretching)                      | Sharp, strong              | 1500–1600 (aromatic C=C stretching)                       | Nitrogen multiple-bond compounds    |
| 2240–2260                      | Cyanate (–OCN stretching)                              | Medium                     | 1080–1190 (C–O stretching)                                | Nitrogen–oxy compounds              |
| 2240–2276                      | Isocyanate (–N=C=O asymmetric stretching)              | Strong                     | ~1700 (carbonyl-related band)                             | Nitrogen multiple-bond compounds    |
| 2240–2280                      | Aliphatic nitrile (C≡N stretching)                     | Sharp                      | 2850–2950 (aliphatic C–H stretching)                      | Nitrogen multiple-bond compounds    |
| 2330–2360                      | Carbon dioxide (CO <sub>2</sub> asymmetric stretching) | Sharp, narrow              | Environmental/background reference                        | Inorganic/gaseous species           |
| 2350                           | Graphitic carbon / CO <sub>2</sub> -related absorption | Weak to medium             | Sample atmosphere, baseline context                       | Carbon / particle-related compounds |
| 2400–2500                      | Weak overtone/combination bands                        | Weak, broad                | Context-dependent; rarely diagnostic alone                | Combination bands                   |

**Table 6.** Master FTIR Dataset – PART V (2500–4000 cm<sup>-1</sup>): High-frequency single-bond and hydrogen-related region. The dataset was adopted and restructured from the literature (Nandiyanto *et al.*, 2019).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment         |     | Peak characteristic    | Companion peak(s) / correlated region(s)                                                       | Classification                |
|--------------------------------|-------------------------------------|-----|------------------------|------------------------------------------------------------------------------------------------|-------------------------------|
| 2500–2700                      | Carboxylic acid                     | O–H | Very broad, intense    | 1700–1725 (acid C=O stretching); 1200–1320 (C–O stretching, often present)                     | Carbonyl compounds            |
| 2700–2800                      | Aldehyde C–H stretching             |     | Weak to medium, narrow | 1725–1740 (aldehyde C=O stretching)                                                            | Carbonyl compounds            |
| 2780–2820                      | Methylamino / N–CH <sub>3</sub>     | C–H | Narrow                 | 1000–1210 (C–N stretching); 1550–1650 (N–H bending, if N–H exists)                             | Amine compounds               |
| 2810–2820                      | Methoxy (–O–CH <sub>3</sub> )       | C–H | Narrow                 | 1050–1150 (C–O stretching); 2820–2810 (paired methoxy band, if resolved)                       | Ether & oxy compounds         |
| 2815–2850                      | Methoxy/methyl ether                | C–H | Narrow                 | 1050–1150 (C–O stretching)                                                                     | Ether & oxy compounds         |
| 2845–2865                      | Methylene C–H symmetric stretching  |     | Sharp                  | 2915–2935 (CH <sub>2</sub> asymmetric stretch); 1445–1485 (CH <sub>2</sub> bending)            | Saturated aliphatic compounds |
| 2860–2880                      | Methyl C–H symmetric stretching     |     | Sharp                  | 2950–2970 (CH <sub>3</sub> asymmetric stretch); 1370–1385 (CH <sub>3</sub> bending)            | Saturated aliphatic compounds |
| 2880–2900                      | Methyne (>CH–)                      | C–H | Sharp                  | 1350–1330 (methyne C–H bending); 700–1300 (skeletal C–C)                                       | Saturated aliphatic compounds |
| 2915–2935                      | Methylene C–H asymmetric stretching |     | Strong, sharp          | 2845–2865 (CH <sub>2</sub> symmetric stretch); 1445–1485 (CH <sub>2</sub> bending)             | Saturated aliphatic compounds |
| 2950–2970                      | Methyl C–H asymmetric stretching    |     | Strong, sharp          | 2860–2880 (CH <sub>3</sub> symmetric stretch); 1430–1470 & 1370–1385 (CH <sub>3</sub> bending) | Saturated aliphatic compounds |
| 3000–3150                      | Aromatic C–H stretching             |     | Sharp                  | 1500–1600 (aromatic C=C stretching); 700–900 (aromatic C–H out-of-plane (oop))                 | Aromatic ring compounds       |
| 3010–3040                      | Olefinic (=C–H) stretching          |     | Sharp                  | 1620–1680 (C=C stretching); 700–1000 (=C–H bending region)                                     | Olefinic compounds (alkene)   |
| 3075–3095                      | Vinyl/vinylidene stretching         |     | Sharp                  | 900–1000 (vinyl/vinylidene bending patterns); 1620–1680 (C=C)                                  | Olefinic compounds (alkene)   |
| 3200–3400                      | Hydrogen-bonded stretching          | O–H | Broad                  | 1260–1410 (O–H bending); 1050–1200 (C–O stretching, if alcohol/phenol)                         | Alcohol & hydroxy compounds   |
| 3200–3570                      | Hydroxy group (H-bonded O–H)        |     | Very broad             | 1260–1410 (O–H bending)                                                                        | Alcohol & hydroxy compounds   |

**Table 6 (continue).** Master FTIR Dataset – PART V (2500–4000 cm<sup>-1</sup>): High-frequency single-bond and hydrogen-related region. The dataset was adopted and restructured from the literature ([Nandiyanto et al., 2019](#)).

| Wavenumber (cm <sup>-1</sup> ) | Functional group/assignment              | Peak characteristic | Companion peak(s) / correlated region(s) | Classification                                                          |                                  |
|--------------------------------|------------------------------------------|---------------------|------------------------------------------|-------------------------------------------------------------------------|----------------------------------|
| <b>3310–3320</b>               | Terminal alkyne $\equiv$ C–H stretching  | Sharp               | 2100–2140 (terminal C≡C stretching)      | Acetylenic compounds (alkyne)                                           |                                  |
| <b>3310–3360</b>               | Secondary amine stretching               | >N–H                | Medium                                   | 1550–1650 (N–H bending); 1130–1190 (C–N stretching)                     | Amine compounds                  |
| <b>3320–3350</b>               | Imino (=N–H) stretching                  |                     | Medium                                   | 1590–1690 (C=N stretching)                                              | Nitrogen multiple-bond compounds |
| <b>3380–3400</b>               | Primary amine N–H stretching (aliphatic) |                     | Medium doublet)                          | (often) 1590–1650 (NH <sub>2</sub> bending); 1020–1090 (C–N stretching) | Amine compounds                  |
| <b>3380–3415</b>               | Primary amine N–H stretching (aromatic)  |                     | Medium doublet)                          | (often) 1500–1600 (aromatic C=C); 1590–1650 (NH <sub>2</sub> bending)   | Amine compounds                  |
| <b>3430–3490</b>               | Heterocyclic amine stretching            | >N–H                | Medium                                   | 1550–1650 (N–H bending)                                                 | Amine compounds                  |
| <b>3450–3550</b>               | Dimeric O–H stretching                   |                     | Broad                                    | 1260–1410 (O–H bending); 1050–1200 (C–O stretching)                     | Alcohol & hydroxy compounds      |
| <b>3530–3640</b>               | Phenolic O–H stretching                  |                     | Medium to sharp                          | 1200 (phenol C–O stretching); 1500–1600 (aromatic C=C)                  | Alcohol & hydroxy compounds      |
| <b>3540–3570</b>               | Internally bonded stretching             | O–H                 | Narrow                                   | Weaker broad O–H region compared to H-bonded                            | Alcohol & hydroxy compounds      |
| <b>3600–3645</b>               | Nonbonded / “free” stretching            | O–H                 | Sharp, narrow                            | Often reduced O–H bending signature                                     | Alcohol & hydroxy compounds      |
| <b>3620–3635</b>               | Secondary alcohol stretching             | O–H                 | Sharp                                    | 1100 (secondary alcohol C–O stretching)                                 | Alcohol & hydroxy compounds      |
| <b>3630–3645</b>               | Primary alcohol O–H stretching           |                     | Sharp                                    | 1050 (primary alcohol C–O stretching)                                   | Alcohol & hydroxy compounds      |

#### 4. STEP-BY-STEP INTERPRETATION WORKFLOW USING THE MASTER FTIR DATASET

The master FTIR dataset is intended to be applied through a clear, sequential workflow that emphasizes correlated peak families across the five spectral regions (PART I–V). The following numbered steps provide a practical procedure that can be directly implemented for routine materials analysis. The numbered workflow is summarized in **Table 7**. By following these steps sequentially, FTIR spectra can be interpreted transparently and reproducibly, minimizing ambiguity and reducing the risk of misassignment through isolated peak reading.

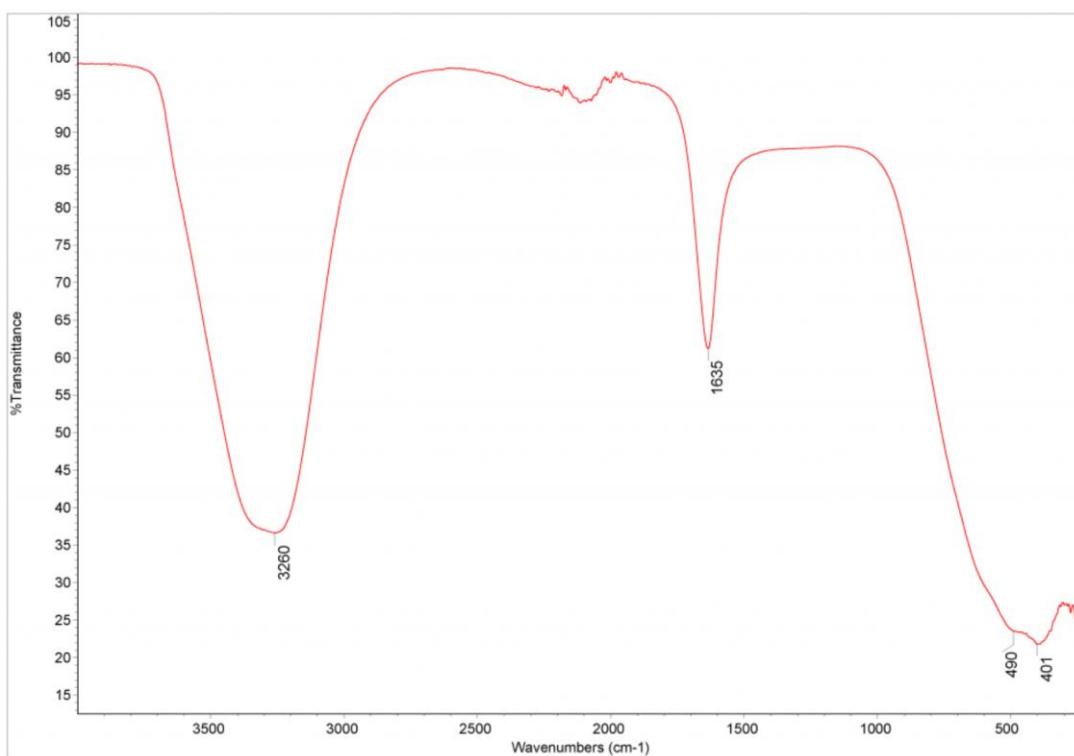
- (i) **Step 0. Pre-check of spectral quality.** Begin by confirming that the FTIR spectrum is suitable for interpretation. Verify the wavenumber orientation (typically 4000–400  $\text{cm}^{-1}$ ), identify the acquisition mode (ATR or transmission), and inspect baseline stability and noise levels. Apply baseline correction if required. This step prevents artefacts from influencing subsequent assignments.
- (ii) **Step 1. High-frequency region—initial material screening (PART V, 2500–4000  $\text{cm}^{-1}$ ).** Examine C–H, O–H, and N–H stretching bands to obtain rapid insight into the general chemical nature of the material. Sharp bands at 2850–2970  $\text{cm}^{-1}$  indicate aliphatic C–H, while bands above 3000  $\text{cm}^{-1}$  suggest aromatic or olefinic C–H. Broad absorptions between 3200 and 3600  $\text{cm}^{-1}$  are characteristic of O–H stretching and hydrogen bonding, whereas medium-intensity bands or doublets in this region often indicate N–H stretching. At this stage, note expected companion peaks in lower regions (e.g., carbonyl or fingerprint features) without drawing final conclusions.
- (iii) **Step 2. Double-bond region—identification of major functional groups (PART III, 1500–1800  $\text{cm}^{-1}$ ).** Inspect absorptions associated with C=C and C=O functionalities. Aromatic skeletal vibrations and conjugated C=C bands typically appear between 1500 and 1650  $\text{cm}^{-1}$ , while carbonyl groups produce strong bands in the 1650–1800  $\text{cm}^{-1}$  range. Use band position and shape to distinguish among ketones, aldehydes, esters, carboxylic acids, amides, and related groups. Confirm assignments by checking correlated features, such as O–H stretching for carboxylic acids or C–O stretching for esters.
- (iv) **Step 3. Triple-bond and cumulative multiple-bond region—diagnostic confirmation (PART IV, 1800–2500  $\text{cm}^{-1}$ ).** Evaluate this region for sharp and well-isolated absorptions, including nitriles (C≡N), alkynes (C≡C), isocyanates (N=C=O), and related species. When present, these bands provide strong confirmatory evidence. Correlate terminal alkyne bands with ≡C–H stretching near 3300  $\text{cm}^{-1}$  and aromatic nitriles with aromatic skeletal features. The absence of peaks here does not negate other assignments but helps constrain structural possibilities.
- (v) **Step 4. Fingerprint region—structural validation (PART II, 700–1500  $\text{cm}^{-1}$ ).** Use the fingerprint region to validate and refine assignments made in Steps 1–3. Identify consistent patterns of C–O, C–N, P–O, S–O, and Si–O stretching, along with backbone skeletal vibrations. Individual bands are rarely diagnostic; interpretation relies on pattern consistency. For example, ester carbonyls should be supported by characteristic C–O bands, while sulfate or carbonate assignments require the expected combination of main and secondary absorptions.
- (vi) **Step 5. Low-frequency region—final supporting evidence (PART I, 400–700  $\text{cm}^{-1}$ ).** Finally, examine low-frequency absorptions to confirm heavy-atom signatures and out-of-plane modes, such as halogenated groups or sulfur-containing species. Although rarely used as

primary identifiers, these bands provide valuable supporting evidence that strengthens the overall interpretation when consistent with higher-frequency assignments.

**Table 7.** Numbered step-by-step FTIR interpretation workflow based on the master dataset

| Step | FTIR region<br>(PART) | Primary purpose                                 | Typical outputs                       |
|------|-----------------------|-------------------------------------------------|---------------------------------------|
| 0    | Pre-check             | Ensure spectral quality and correct orientation | Baseline-corrected, reliable spectrum |
| 1    | PART V (2500–4000)    | Rapid screening of C–H, O–H, N–H                | Initial material classification       |
| 2    | PART III (1500–1800)  | Identify C=C and C=O functionalities            | Major functional groups               |
| 3    | PART IV (1800–2500)   | Detect triple-bond and cumulative species       | Highly diagnostic confirmation        |
| 4    | PART II (700–1500)    | Validate structure via fingerprint patterns     | Consistency and refinement            |
| 5    | PART I (400–700)      | Confirm heavy atoms and low-frequency modes     | Final supporting evidence             |

## 5. REPRESENTATIVE EXAMPLE: STEP-BY-STEP FTIR INTERPRETATION


To simplify the illustration of the proposed step-by-step FTIR interpretation workflow, representative spectra in this section are adopted from an open-access FTIR reference database for conservation and materials analysis ([https://spectra.chem.ut.ee/conservation\\_materials/](https://spectra.chem.ut.ee/conservation_materials/) and <https://orgchemboulder.com/Spectroscopy/irtutor/alkhalidesir.shtml>; accessed and updated on 11 January 2026). The use of standardized reference spectra allows a clear demonstration of the master dataset and peak-correlation approach.

### 5.1. Case 1: Inorganic / silicate-type with hydroxyl material

The FTIR spectrum of the representative material is shown in **Figure 2** and is interpreted using the step-by-step workflow based on the master FTIR dataset.

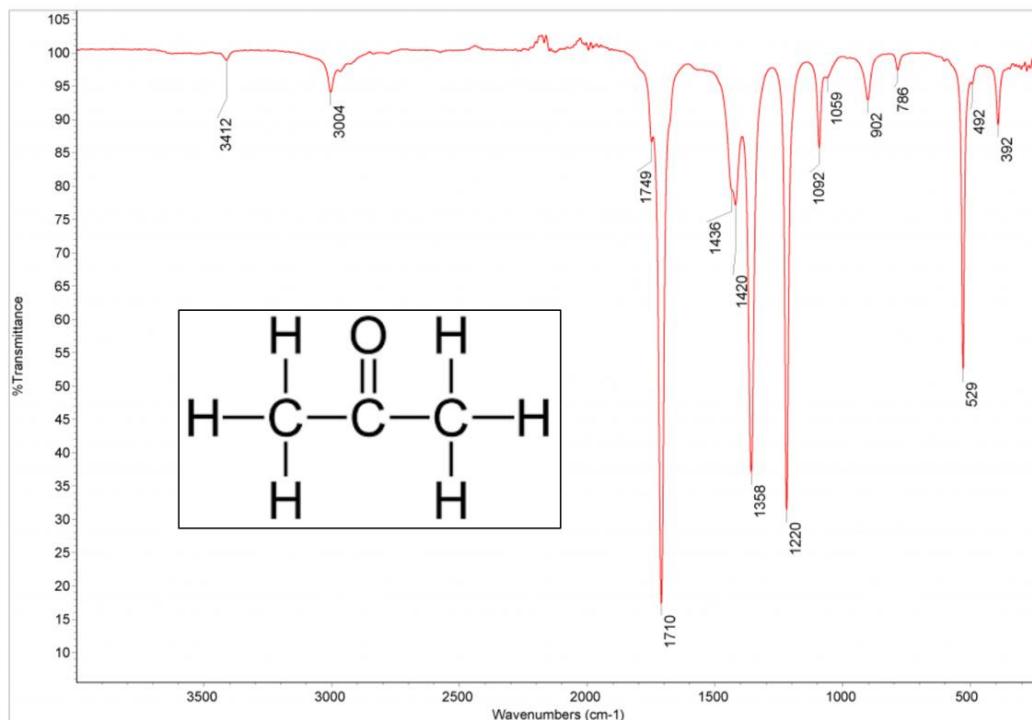
- (i) **Step 0. Spectral quality check.** The spectrum covers the full FTIR range (4000–400  $\text{cm}^{-1}$ ) with a stable baseline and low noise. No significant artefacts are observed, indicating that the spectrum is suitable for interpretation. The extracted absorption peaks used as the basis for the step-by-step analysis are summarized in **Table 8**.
- (ii) **Step 1. High-frequency region (PART V, 2500–4000  $\text{cm}^{-1}$ ).** A broad and strong absorption band is observed at approximately 3260  $\text{cm}^{-1}$ , which is characteristic of O–H stretching associated with hydrogen-bonded hydroxyl groups or adsorbed water. No distinct absorption bands are detected in the aliphatic C–H stretching region (2850–2970  $\text{cm}^{-1}$ ), indicating that organic hydrocarbon components are not dominant in the material.
- (iii) **Step 2. Double-bond region (PART III, 1500–1800  $\text{cm}^{-1}$ ).** An absorption band appears at approximately 1635  $\text{cm}^{-1}$ . When correlated with the broad O–H stretching band at higher wavenumber, this feature is consistent with H–O–H bending vibrations, which are commonly associated with molecular or bound water in inorganic or particulate materials. No strong carbonyl-related absorptions are detected in this region.

- (iv) **Step 3. Triple-bond and cumulative multiple-bond region (PART IV, 1800–2500 cm<sup>-1</sup>).** No significant absorption bands are present in this region, excluding the presence of triple-bond or cumulative multiple-bond functionalities such as nitriles, alkynes, or isocyanates.
- (v) **Step 4. Fingerprint region (PART II, 700–1500 cm<sup>-1</sup>).** A broad and intense absorption band is observed in the range of approximately 1000–1100 cm<sup>-1</sup>, which is characteristic of Si–O stretching vibrations in silicate or metal–oxygen frameworks. This band represents the dominant backbone vibration of the material and serves as a key fingerprint feature for inorganic network structures.
- (vi) **Step 5. Low-frequency region (PART I, 400–700 cm<sup>-1</sup>).** Weaker but distinct absorption bands are observed at approximately 490 and 401 cm<sup>-1</sup>. These low-frequency features are consistent with Si–O bending modes and/or metal–oxygen lattice vibrations, providing additional supporting evidence for an inorganic framework.



**Figure 2.** FTIR spectrum of a representative material, Case 1. The figure was adopted from reference ([https://spectra.chem.ut.ee/conservation\\_materials/](https://spectra.chem.ut.ee/conservation_materials/); accessed and updated on 11 January 2026).

**Table 8.** Extracted FTIR peaks from Figure 2 used for step-by-step interpretation


| No | Experimental data                      |                     |      | Wavenumber in reference (cm <sup>-1</sup> ) | Companion peak(s)                                                                   | Assignment                           | Interpretation role                               |
|----|----------------------------------------|---------------------|------|---------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|
|    | Approx. wavenumber (cm <sup>-1</sup> ) | Peak characteristic | Part |                                             |                                                                                     |                                      |                                                   |
| 1  | ~3260                                  | Broad, strong       | V    | 3200–3600                                   | Peak No. 2 (H–O–H bending at ~1635) for O–H / water confirmation                    | O–H stretching (hydrogen-bonded)     | Identifies hydroxyl groups or adsorbed water      |
| 2  | ~1635                                  | Sharp, medium       | III  | 1600–1650                                   | Peak No. 1 (O–H stretching at ~3260) to confirm bound or adsorbed water             | H–O–H bending vibration              | Confirms the presence of molecular or bound water |
| 3  | ~1100–1000                             | Broad, strong       | II   | 1000–1100                                   | Peaks No. 4 & 5 (low-frequency Si–O bending/lattice modes) for framework validation | Si–O stretching (silicate framework) | Main backbone vibration in the fingerprint region |
| 4  | ~490                                   | Sharp, weak         | I    | 450–520                                     | Peak No. 3 (Si–O stretching at ~1100–1000) for bending–stretching correlation       | Si–O bending vibration               | Supporting evidence for silicate-type structure   |
| 5  | ~401                                   | Sharp, weak         | I    | 380–450                                     | Peak No. 3 (Si–O stretching at ~1100–1000) to confirm metal–oxygen lattice          | Metal–O or lattice vibration         | Final confirmation of the inorganic framework     |

## 5.2. Case 2: Simple carbonyl

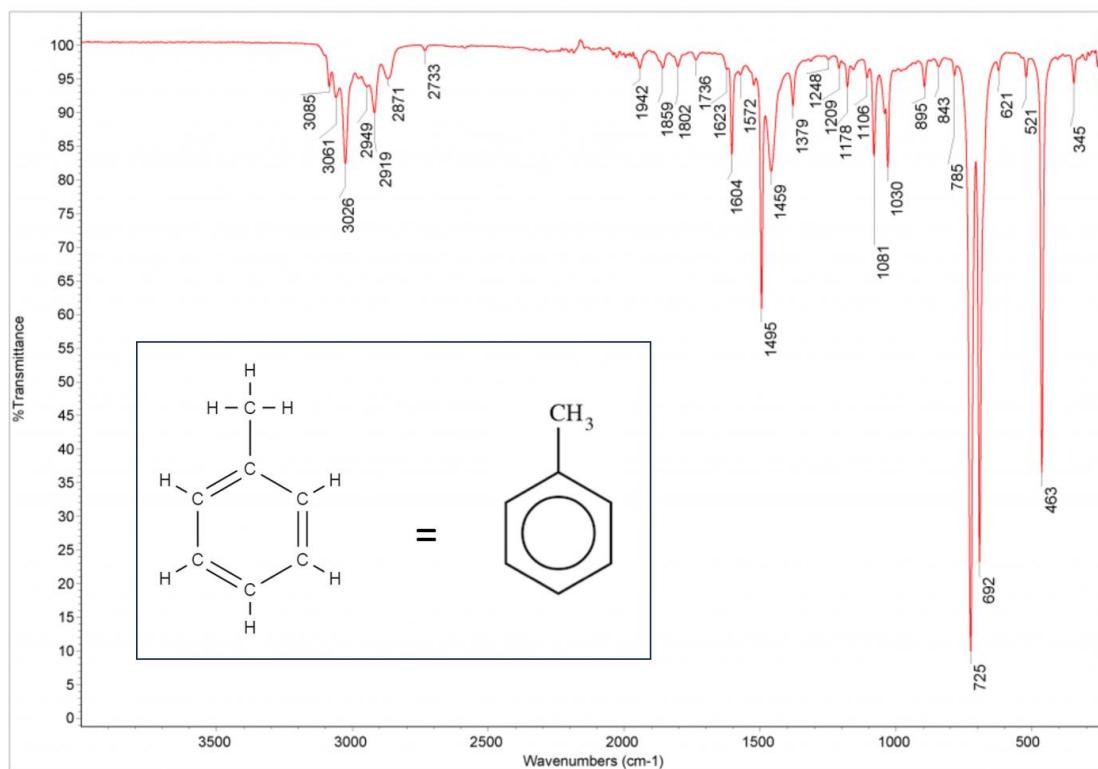
The FTIR spectrum of the representative organic material is shown in **Figure 3** and is interpreted using the step-by-step workflow based on the master FTIR dataset.

- (i) **Step 0. Spectral quality check.** The spectrum covers the full FTIR range (4000–400 cm<sup>-1</sup>) with a stable baseline and clearly resolved absorption bands. No significant artefacts are observed, indicating that the spectrum is suitable for step-by-step interpretation. The extracted absorption peaks used for analysis are summarized in **Table 9**.
- (ii) **Step 1. High-frequency region (PART V, 2500–4000 cm<sup>-1</sup>).** A weak and broad absorption band is observed at approximately 3412 cm<sup>-1</sup>, suggesting the presence of O–H stretching, likely associated with weakly hydrogen-bonded hydroxyl groups or residual moisture. In addition, a distinct absorption at approximately 3004 cm<sup>-1</sup> corresponds to aromatic or olefinic C–H stretching. The coexistence of these bands indicates that the material contains unsaturated organic components with possible hydroxyl involvement.

- (iii) **Step 2. Double-bond region (PART III, 1500–1800 cm<sup>-1</sup>).** A very strong and sharp absorption band is observed in the range of 1710–1749 cm<sup>-1</sup>, which is characteristic of carbonyl (C=O) stretching. The position and intensity of this band are consistent with an ester-type carbonyl rather than a carboxylic acid or amide, as no broad O–H band typical of acids or amide-related features are present.
- (iv) **Step 3. Triple-bond and cumulative multiple-bond region (PART IV, 1800–2500 cm<sup>-1</sup>).** No significant absorption bands are detected in this region, excluding the presence of triple-bond or cumulative multiple-bond functionalities such as nitriles or alkynes. This simplifies the interpretation by limiting the functional group possibilities.
- (v) **Step 4. Fingerprint region (PART II, 700–1500 cm<sup>-1</sup>).** The fingerprint region displays multiple absorption bands, including peaks at approximately 1436, 1420, and 1358 cm<sup>-1</sup>, which are associated with bending vibrations of alkyl (–CH<sub>2</sub>/–CH<sub>3</sub>) groups. Strong bands at approximately 1220, 1092, and 1059 cm<sup>-1</sup> are assigned to C–O stretching vibrations, providing strong supporting evidence for ester linkages within the organic structure. Additional bands at approximately 902 and 786 cm<sup>-1</sup> correspond to out-of-plane C–H bending modes, supporting the presence of aromatic or unsaturated groups.
- (vi) **Step 5. Low-frequency region (PART I, 400–700 cm<sup>-1</sup>).** Weak but distinct absorption bands are observed at approximately 529, 492, and 392 cm<sup>-1</sup>. These low-frequency features are attributed to skeletal or ring deformation modes and provide final supporting evidence for the organic framework.



**Figure 3.** FTIR spectrum of a representative material, Case 2. The figure was adopted from reference ([https://spectra.chem.ut.ee/conservation\\_materials/](https://spectra.chem.ut.ee/conservation_materials/); accessed and updated on 11 January 2026).


**Table 9.** Extracted FTIR peaks from Figure 3 used for step-by-step interpretation

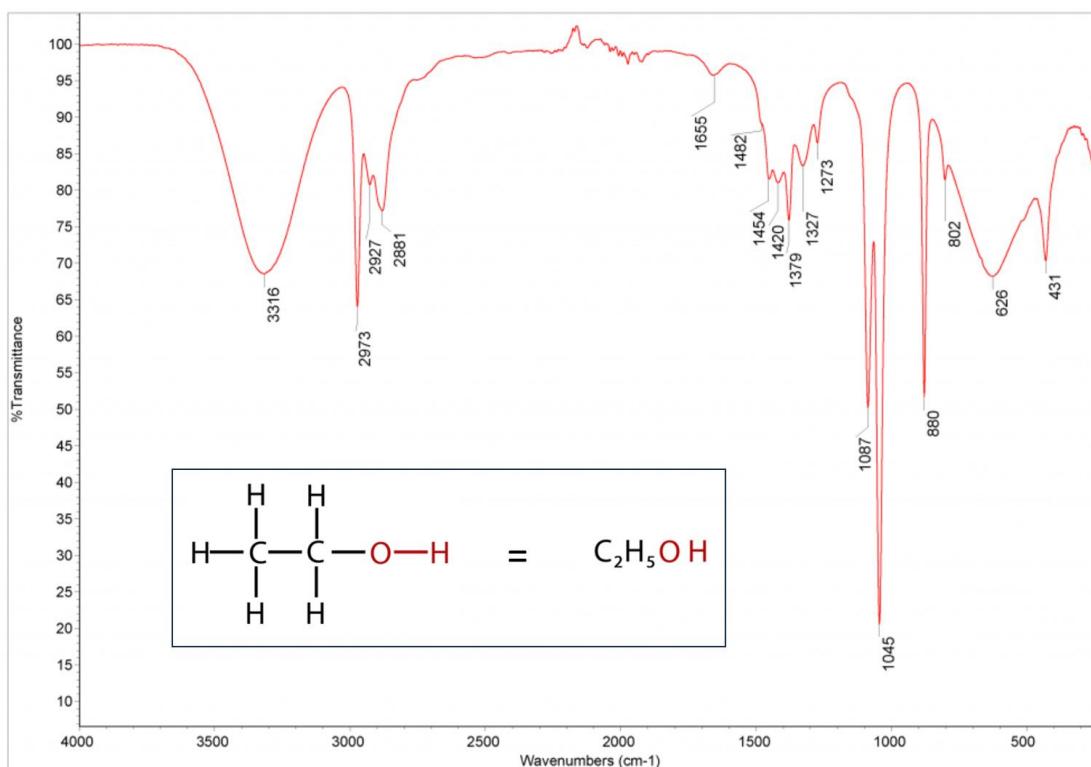
| No | Experimental data                            |                        |      | Wavenumber<br>in reference<br>(cm <sup>-1</sup> ) | Companion peak(s)                                          | Assignment                                | Interpretation role                     |
|----|----------------------------------------------|------------------------|------|---------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-----------------------------------------|
|    | Approx.<br>wavenumber<br>(cm <sup>-1</sup> ) | Peak<br>characteristic | Part |                                                   |                                                            |                                           |                                         |
| 1  | ~3412                                        | Broad, weak–medium     | V    | 3200–3600                                         | Peak No. 2 (~3004) to check aromatic/olefinic vs O–H       | O–H (weakly bonded)                       | Stretching hydrogen-bonded              |
| 2  | ~3004                                        | Sharp, weak            | V    | 3000–3100                                         | Peak No. 6–7 (C=C related) for aromatic confirmation       | Aromatic/olefinic C–H stretching          | Indicates unsaturated or aromatic C–H   |
| 3  | ~1749–1710                                   | Very strong, sharp     | III  | 1700–1750                                         | Peaks No. 6–8 (C–O stretching region) for ester validation | C=O stretching (ester/carbonyl)           | Primary functional group identification |
| 4  | ~1436                                        | Medium                 | II   | 1400–1460                                         | Peak No. 5 (~1420) for CH bending pair                     | CH <sub>2</sub> / CH <sub>3</sub> bending | Fingerprint support for alkyl groups    |
| 5  | ~1420                                        | Medium                 | II   | 1410–1440                                         | Peak No. 4 (~1436) for CH bending correlation              | CH <sub>2</sub> / CH <sub>3</sub> bending | Confirms alkyl substituents             |
| 6  | ~1358                                        | Medium                 | II   | 1340–1380                                         | Peak No. 4–5 (alkyl bending)                               | CH <sub>3</sub> symmetric bending         | Fingerprint confirmation alkyl          |
| 7  | ~1220                                        | Strong, sharp          | II   | 1200–1300                                         | Peak No. 3 (C=O) for ester linkage check                   | C–O stretching (ester)                    | Supports ester functionality            |
| 8  | ~1092                                        | Medium                 | II   | 1050–1150                                         | Peak No. 7 (~1220)                                         | C–O stretching                            | Additional fingerprint ester            |
| 9  | ~1059                                        | Medium                 | II   | 1020–1080                                         | Peak No. 7–8 (C–O region)                                  | C–O stretching                            | Confirms oxygenated backbone            |
| 10 | ~902                                         | Sharp, weak            | II   | 880–910                                           | Peak No. 2 (~3004)                                         | =C–H out-of-plane bending                 | Aromatic/olefinic confirmation          |
| 11 | ~786                                         | Sharp, weak            | II   | 750–820                                           | Peak No. 2 (~3004)                                         | Aromatic C–H out-of-plane                 | Aromatic ring support                   |
| 12 | ~529                                         | Sharp, weak            | I    | 500–550                                           | Peak No. 3 (C=O) for framework check                       | Skeletal / ring deformation               | Low-frequency organic support           |
| 13 | ~492                                         | Sharp, weak            | I    | 450–520                                           | Peak No. 12 (~529)                                         | Skeletal vibration                        | Supporting low-frequency mode           |
| 14 | ~392                                         | Sharp, weak            | I    | 380–420                                           | Peak No. 12–13                                             | Lattice / skeletal vibration              | Final low-frequency confirmation        |

### 5.3. Case 3: Aromatic / substituted organic material

The FTIR spectrum of the representative material is shown in **Figure 4** and is interpreted using the step-by-step workflow based on the master FTIR dataset.

- (i) **Step 0. Spectral quality check.** The spectrum covers the full FTIR range (4000–400  $\text{cm}^{-1}$ ) with a stable baseline and well-resolved absorption bands. Numerous sharp peaks are observed across multiple regions, indicating high spectral quality and suitability for detailed step-by-step interpretation. The extracted absorption peaks used for analysis are summarized in **Table 10**.
- (ii) **Step 1. High-frequency region (PART V, 2500–4000  $\text{cm}^{-1}$ ).** Several absorption bands are observed in the region above 3000  $\text{cm}^{-1}$ , including peaks at approximately 3085, 3061, and 3026  $\text{cm}^{-1}$ , which are characteristic of aromatic C–H stretching vibrations. Additional bands at approximately 2949, 2919, and 2871  $\text{cm}^{-1}$  correspond to aliphatic C–H stretching. A weak feature near 2733  $\text{cm}^{-1}$  may be associated with overtone or combination bands. The coexistence of aromatic and aliphatic C–H stretching indicates an aromatic-rich organic structure with alkyl substituents.
- (iii) **Step 2. Double-bond region (PART III, 1500–1800  $\text{cm}^{-1}$ ).** Multiple absorption bands are observed in this region, including peaks at approximately 1623 and 1604  $\text{cm}^{-1}$ , which are characteristic of aromatic C=C stretching vibrations. Additional bands at approximately 1572  $\text{cm}^{-1}$  further support the presence of an aromatic ring system. No dominant carbonyl absorption is observed near 1700–1750  $\text{cm}^{-1}$ , indicating that carbonyl functionalities are not a major component of this material.
- (iv) **Step 3. Triple-bond and cumulative multiple-bond region (PART IV, 1800–2500  $\text{cm}^{-1}$ ).** No strong diagnostic absorption bands are present in the 1800–2500  $\text{cm}^{-1}$  range. This excludes the presence of nitrile, alkyne, or other cumulative multiple-bond functionalities and simplifies the structural interpretation.
- (v) **Step 4. Fingerprint region (PART II, 700–1500  $\text{cm}^{-1}$ ).** The fingerprint region exhibits numerous well-defined absorption bands. Peaks at approximately 1495 and 1459  $\text{cm}^{-1}$  correspond to aromatic ring skeletal vibrations. Strong bands at approximately 1248, 1209, 1178, 1106, 1081, and 1030  $\text{cm}^{-1}$  are associated with in-plane C–H bending and ring-related vibrations. Additional bands at approximately 895, 843, 785, and 692  $\text{cm}^{-1}$  are assigned to out-of-plane aromatic C–H bending modes, which are highly diagnostic for substituted aromatic systems.
- (vi) **Step 5. Low-frequency region (PART I, 400–700  $\text{cm}^{-1}$ ).** Distinct absorption bands are observed at approximately 725, 621, 521, 463, and 345  $\text{cm}^{-1}$ . These low-frequency features are attributed to ring deformation, skeletal vibrations, and lattice-related modes, providing final supporting evidence for a rigid aromatic framework.




**Figure 4.** FTIR spectrum of a representative material, Case 3. The figure was adopted from reference ([https://spectra.chem.ut.ee/conservation\\_materials/](https://spectra.chem.ut.ee/conservation_materials/); accessed and updated on 11 January 2026).

#### 5.4. Case 4: Simple Hydroxyl Material with Alkyl and Ether Features

The FTIR spectrum of the representative material is shown in **Figure 5** and is interpreted using the step-by-step workflow based on the master FTIR dataset.

- (o) **Step 0. Spectral quality check.** The spectrum covers the full FTIR range (4000–400  $\text{cm}^{-1}$ ) with a stable baseline and clearly distinguishable absorption bands. The spectrum quality is sufficient for systematic interpretation. The extracted absorption peaks used as the basis for analysis are summarized in **Table 11**.
- (i) **Step 1. High-frequency region (PART V, 2500–4000  $\text{cm}^{-1}$ ).** A broad and intense absorption band is observed at approximately 3316  $\text{cm}^{-1}$ , which is characteristic of O–H stretching associated with hydrogen-bonded hydroxyl groups. In addition, multiple sharp absorption bands are present at approximately 2973, 2927, and 2881  $\text{cm}^{-1}$ , corresponding to aliphatic C–H stretching vibrations. The coexistence of strong O–H and aliphatic C–H bands indicates a hydroxylated organic material with an alkyl backbone.
- (ii) **Step 2. Double-bond region (PART III, 1500–1800  $\text{cm}^{-1}$ ).** An absorption band is observed at approximately 1655  $\text{cm}^{-1}$ . When correlated with the strong O–H stretching band at higher wavenumber, this feature is consistent with H–O–H bending or hydrogen-bond-related deformation rather than a carbonyl (C=O) stretching vibration. No strong ester or ketone carbonyl absorption is detected near 1700–1750  $\text{cm}^{-1}$ .

- (iii) **Step 3. Triple-bond and cumulative multiple-bond region (PART IV, 1800–2500 cm<sup>-1</sup>).** No significant absorption bands are detected in this region, excluding the presence of triple-bond or cumulative multiple-bond functionalities such as nitriles or alkynes.
- (iv) **Step 4. Fingerprint region (PART II, 700–1500 cm<sup>-1</sup>).** The fingerprint region shows several well-defined absorption bands. Peaks at approximately 1454, 1420, 1379, and 1327 cm<sup>-1</sup> are attributed to bending vibrations of alkyl (–CH<sub>2</sub>/–CH<sub>3</sub>) groups. Strong absorptions at approximately 1273, 1087, and 1045 cm<sup>-1</sup> are assigned to C–O stretching vibrations, indicating the presence of ether or alcohol functionalities within the organic framework. An additional band near 880 cm<sup>-1</sup> corresponds to C–H out-of-plane bending.
- (v) **Step 5. Low-frequency region (PART I, 400–700 cm<sup>-1</sup>).** Absorption bands at approximately 626 and 431 cm<sup>-1</sup> are observed in the low-frequency region and are associated with skeletal or deformation modes, providing supporting evidence for the organic framework.

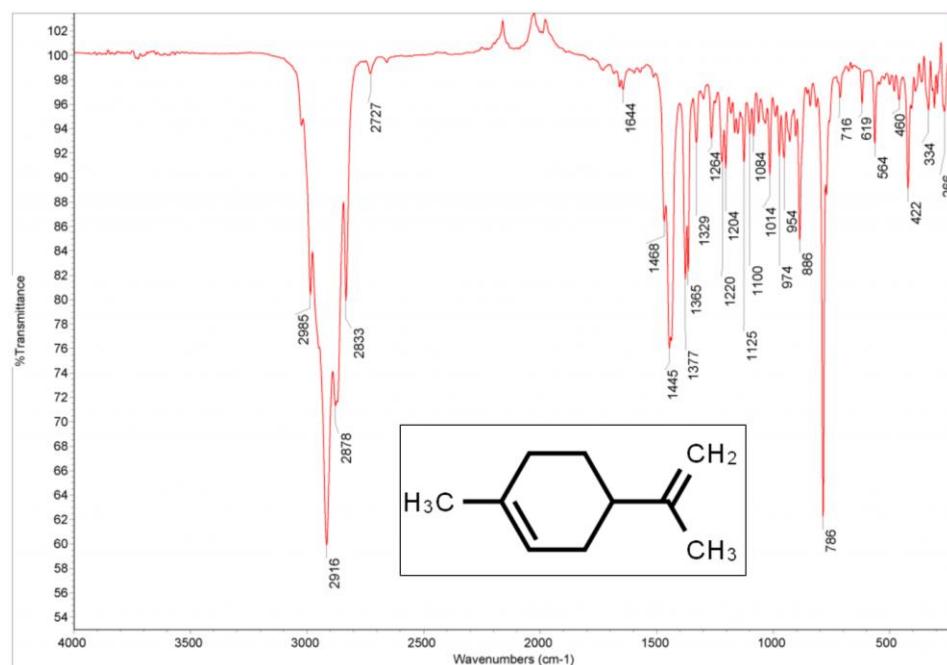


**Figure 5.** FTIR spectrum of a representative material, Case 4. The figure was adopted from reference ([https://spectra.chem.ut.ee/conservation\\_materials/](https://spectra.chem.ut.ee/conservation_materials/); accessed and updated on 11 January 2026).

**Table 10.** Extracted FTIR peaks from Figure 4 used for step-by-step interpretation

| No | Experimental data                      |                     |                 | Wavenumber in reference (cm <sup>-1</sup> ) | Companion peak(s)            |                                             |         | Assignment                        | Interpretation role                 |
|----|----------------------------------------|---------------------|-----------------|---------------------------------------------|------------------------------|---------------------------------------------|---------|-----------------------------------|-------------------------------------|
|    | Approx. wavenumber (cm <sup>-1</sup> ) | Peak characteristic | Part            |                                             |                              |                                             |         |                                   |                                     |
| 1  | ~3085–3026                             | Sharp, medium       | weak–<br>medium | V                                           | 3000–3100                    | Peaks (aromatic out-of-plane (oop) bending) | No. 2–4 | Aromatic C–H stretching           | Identifies aromatic framework       |
| 2  | ~2949–2871                             | Sharp, medium       | V               | 2850–2970                                   | Peak No. 1 (aromatic C–H)    |                                             |         | Aliphatic C–H stretching          | Indicates alkyl substituents        |
| 3  | ~1623–1604                             | Medium              | III             | 1600–1650                                   | Peaks (aromatic fingerprint) | No. 4–6                                     |         | Aromatic C=C stretching           | Confirms aromatic ring system       |
| 4  | ~1572                                  | Medium              | III             | 1550–1600                                   | Peaks No. 1 & 3              |                                             |         | Aromatic skeletal vibration       | Supports aromatic structure         |
| 5  | ~1495–1459                             | Medium              | II              | 1450–1500                                   | Peaks No. 3–4                |                                             |         | Aromatic ring vibration           | Fingerprint confirmation            |
| 6  | ~1248–1030                             | Strong              | II              | 1000–1300                                   | Peaks No. 3 & 7              |                                             |         | In-plane C–H / ring vibrations    | Structural fingerprint              |
| 7  | ~895–692                               | Sharp, strong       | II              | 690–900                                     | Peaks No. 1 & 3              |                                             |         | Aromatic C–H out-of-plane bending | Diagnostic of substituted aromatics |
| 8  | ~725–345                               | Sharp, weak         | I               | 300–700                                     | Peaks No. 5–7                |                                             |         | Ring deformation/lattice modes    | Final structural confirmation       |

**Table 11.** Extracted FTIR peaks from Figure 5 used for step-by-step interpretation


| No | Experimental data                      |                     |      | Wavenumber in reference (cm <sup>-1</sup> ) | Companion peak(s)                             | Assignment                                | Interpretation role                |
|----|----------------------------------------|---------------------|------|---------------------------------------------|-----------------------------------------------|-------------------------------------------|------------------------------------|
|    | Approx. wavenumber (cm <sup>-1</sup> ) | Peak characteristic | Part |                                             |                                               |                                           |                                    |
| 1  | ~3316                                  | Broad, strong       | V    | 3200–3600                                   | Peak No. 2 (1655) for O–H / water correlation | O–H stretching (hydrogen-bonded)          | Identifies hydroxyl groups         |
| 2  | ~2973–2881                             | Sharp, strong       | V    | 2850–2970                                   | Peak No. 4–6 (alkyl bending)                  | Aliphatic C–H stretching                  | Indicates alkyl backbone           |
| 3  | ~1655                                  | Medium              | III  | 1600–1650                                   | Peak No. 1 (O–H stretching)                   | H–O–H bending / O–H deformation           | Supports hydrogen bonding          |
| 4  | ~1454–1379                             | Medium              | II   | 1370–1460                                   | Peak No. 2 (C–H stretching)                   | CH <sub>2</sub> / CH <sub>3</sub> bending | Alkyl fingerprint confirmation     |
| 5  | ~1327                                  | Medium              | II   | 1300–1350                                   | Peak No. 4                                    | CH <sub>3</sub> symmetric bending         | Fingerprint support                |
| 6  | ~1273                                  | Strong              | II   | 1200–1300                                   | Peak No. 1 & 3                                | C–O stretching                            | Ether/alcohol confirmation         |
| 7  | ~1087–1045                             | Very strong         | II   | 1000–1100                                   | Peak No. 6 (C–O stretching)                   | C–O stretching                            | Main oxygenated backbone vibration |
| 8  | ~880                                   | Sharp, weak         | II   | 850–900                                     | Peak No. 2                                    | C–H out-of-plane bending                  | Structural support                 |
| 9  | ~626–431                               | Weak                | I    | 400–700                                     | Peaks No. 4–8                                 | Skeletal / deformation modes              | Final framework confirmation       |

## 5.5. Case 5: Aliphatic material

The FTIR spectrum of the representative material is shown in **Figure 6** and is interpreted using the step-by-step workflow based on the master FTIR dataset.

- (i) **Step 0. Spectral quality check.** The spectrum spans the full FTIR range (4000–400 cm<sup>-1</sup>) and exhibits a stable baseline with numerous sharp absorption bands, particularly in the fingerprint region. The spectral quality is sufficient for systematic step-by-step interpretation. The extracted absorption peaks used for analysis are summarized in **Table 12**.

- (ii) **Step 1. High-frequency region (PART V, 2500–4000 cm<sup>-1</sup>).** Strong and sharp absorption bands are observed at approximately 2985, 2916, 2878, and 2833 cm<sup>-1</sup>, which are characteristic of aliphatic C–H stretching vibrations. A weaker band near 2727 cm<sup>-1</sup> may be attributed to overtone or combination bands. The absence of broad absorption in the 3200–3600 cm<sup>-1</sup> region indicates that O–H or N–H groups are not dominant in this material.
- (iii) **Step 2. Double-bond region (PART III, 1500–1800 cm<sup>-1</sup>).** An absorption band is observed at approximately 1644 cm<sup>-1</sup>. In the absence of strong carbonyl-related peaks near 1700–1750 cm<sup>-1</sup>, this band is more consistent with C=C stretching or weakly bound water rather than a carbonyl functional group. No prominent ester or ketone carbonyl absorption is detected.
- (iv) **Step 3. Triple-bond and cumulative multiple-bond region (PART IV, 1800–2500 cm<sup>-1</sup>).** No significant absorption bands are observed in this region, excluding the presence of nitrile, alkyne, or related cumulative multiple-bond functionalities.
- (v) **Step 4. Fingerprint region (PART II, 700–1500 cm<sup>-1</sup>).** The fingerprint region contains numerous well-resolved absorption bands. Peaks at approximately 1468, 1445, 1377, and 1365 cm<sup>-1</sup> are attributed to bending vibrations of alkyl (–CH<sub>2</sub>/–CH<sub>3</sub>) groups. Strong bands at approximately 1329, 1264, 1220, 1204, 1125, 1100, 1084, 1014, and 974 cm<sup>-1</sup> are associated with C–C and C–O stretching and deformation modes, indicating a dense aliphatic backbone with multiple substituents.
- (vi) **Step 5. Low-frequency region (PART I, 400–700 cm<sup>-1</sup>).** Distinct absorption bands at approximately 786, 716, 619, 564, 460, 422, 334, and 266 cm<sup>-1</sup> are observed. These low-frequency features correspond to skeletal deformation and lattice-related modes, providing final supporting evidence for a complex aliphatic organic framework.



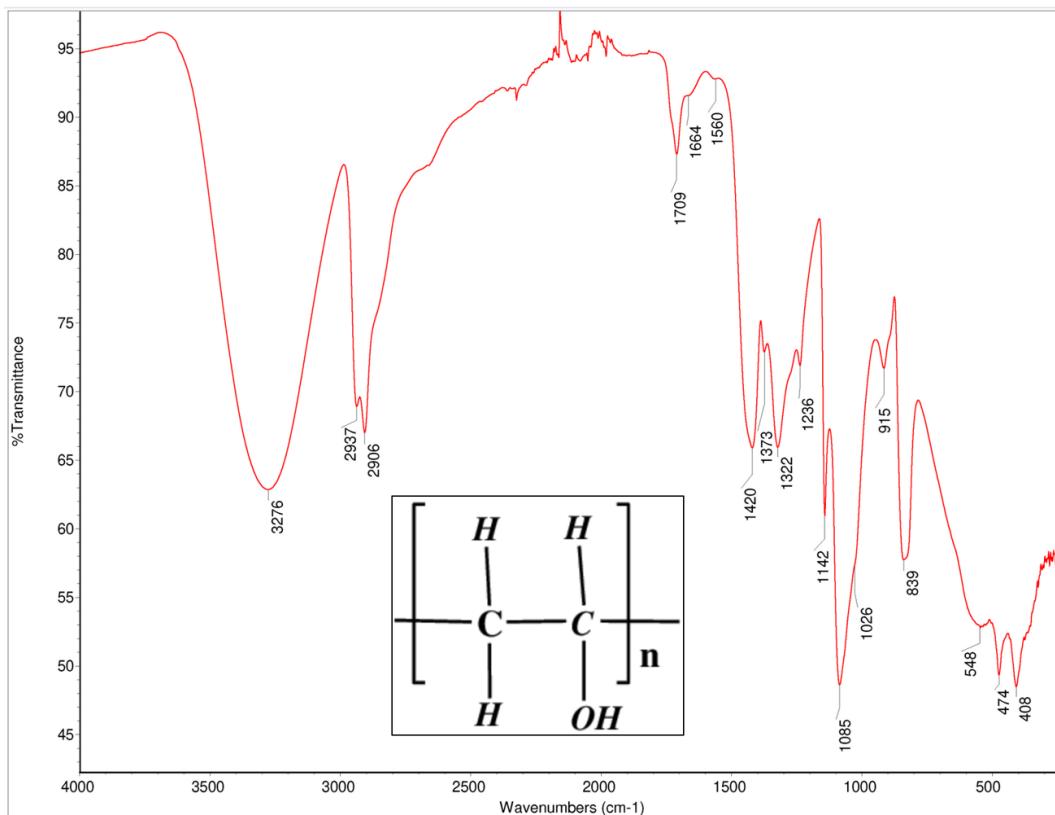
**Figure 6.** FTIR spectrum of a representative material, Case 5. The figure was adopted from reference ([https://spectra.chem.ut.ee/conservation\\_materials/](https://spectra.chem.ut.ee/conservation_materials/); accessed and updated on 11 January 2026).

**Table 12.** Extracted FTIR peaks from Figure 6 used for step-by-step interpretation.

| No | Experimental data                      |                     |      | Wavenumber in reference (cm <sup>-1</sup> ) | Companion peak(s)             | Assignment                          | Interpretation role |                                |
|----|----------------------------------------|---------------------|------|---------------------------------------------|-------------------------------|-------------------------------------|---------------------|--------------------------------|
|    | Approx. wavenumber (cm <sup>-1</sup> ) | Peak characteristic | Part |                                             |                               |                                     |                     |                                |
| 1  | ~2985–2833                             | Sharp, strong       | V    | 2850–3000                                   | Peaks No. 4–6 (alkyl bending) | Aliphatic stretching                | C–H                 | Identifies backbone aliphatic  |
| 2  | ~2727                                  | Weak                | V    | 2700–2750                                   | Peak No. 1                    | Overtone / combination band         |                     | Minor spectral feature         |
| 3  | ~1644                                  | Medium              | III  | 1600–1650                                   | Peak No. 1 (C–H stretching)   | C=C stretching / weak H–O–H bending |                     | Secondary structural indicator |
| 4  | ~1468–1445                             | Medium              | II   | 1450–1470                                   | Peak No. 1                    | CH <sub>2</sub> bending             |                     | Alkyl fingerprint confirmation |
| 5  | ~1377–1365                             | Medium              | II   | 1360–1380                                   | Peak No. 4                    | CH <sub>3</sub> bending             |                     | Supports alkyl substitution    |
| 6  | ~1329–1204                             | Strong              | II   | 1200–1350                                   | Peaks No. 1 & 7               | C–C / C–O stretching                |                     | Main fingerprint backbone      |
| 7  | ~1125–974                              | Strong              | II   | 950–1150                                    | Peaks No. 6 & 8               | Backbone deformation modes          |                     | Structural fingerprint         |
| 8  | ~786–266                               | Sharp, weak         | I    | 250–800                                     | Peaks No. 4–7                 | Skeletal / lattice modes            |                     | Final framework confirmation   |

## 5.6. Case 6: Simple polymer

The FTIR spectrum of the representative material is shown in **Figure 7** and is interpreted using the step-by-step workflow based on the master FTIR dataset.


- (i) **Step 0. Spectral quality check.** The spectrum spans the full FTIR range (4000–400 cm<sup>-1</sup>) with a stable baseline and clearly resolved absorption bands. No major artefacts are observed. The extracted absorption peaks used for the step-by-step interpretation are summarized in **Table 13**.
- (ii) **Step 1. High-frequency region (PART V, 2500–4000 cm<sup>-1</sup>).** A broad and intense absorption band is observed at approximately 3276 cm<sup>-1</sup>, which is characteristic of O–H stretching associated with hydrogen-bonded hydroxyl groups. In addition, distinct absorption bands at approximately 2937 and 2906 cm<sup>-1</sup> correspond to aliphatic C–H stretching vibrations. The coexistence of O–H and aliphatic C–H features indicates a hydroxyl-containing organic material with an alkyl backbone.

(iii) **Step 2. Double-bond region (PART III, 1500–1800 cm<sup>-1</sup>).** A strong absorption band is observed at approximately 1709 cm<sup>-1</sup>, which is characteristic of a carbonyl (C=O) stretching vibration. Additional bands at approximately 1664 and 1560 cm<sup>-1</sup> are consistent with conjugated C=O/C=C vibrations or amide-like environments. The position and intensity of these bands indicate the presence of a carbonyl-containing functional group, potentially conjugated or hydrogen-bonded.

(iv) **Step 3. Triple-bond and cumulative multiple-bond region (PART IV, 1800–2500 cm<sup>-1</sup>).** No significant absorption bands are detected in this region, excluding the presence of nitrile, alkyne, or other cumulative multiple-bond functionalities.

(v) **Step 4. Fingerprint region (PART II, 700–1500 cm<sup>-1</sup>).** The fingerprint region exhibits multiple well-defined absorption bands. Peaks at approximately 1420, 1373, and 1322 cm<sup>-1</sup> are attributed to bending vibrations of alkyl groups. Strong bands at approximately 1236, 1142, 1085, and 1026 cm<sup>-1</sup> are associated with C–O stretching vibrations, supporting the presence of ester, ether, or alcohol functionalities. Additional bands at approximately 915 and 839 cm<sup>-1</sup> correspond to out-of-plane C–H bending modes.

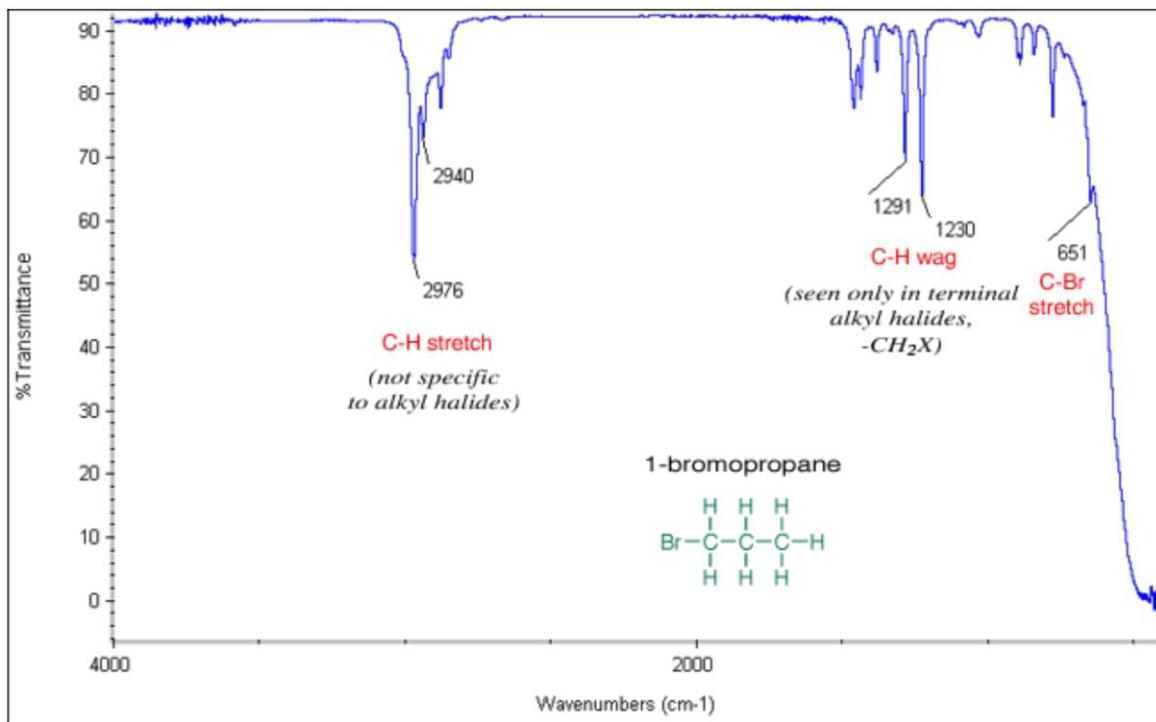
(vi) **Step 5. Low-frequency region (PART I, 400–700 cm<sup>-1</sup>).** Distinct absorption bands are observed at approximately 548, 474, and 408 cm<sup>-1</sup>. These low-frequency features are attributed to skeletal deformation and lattice-related modes, providing final supporting evidence for the organic framework.



**Figure 7.** FTIR spectrum of a representative material, Case 6. The figure was adopted from reference ([https://spectra.chem.ut.ee/conservation\\_materials/](https://spectra.chem.ut.ee/conservation_materials/); accessed and updated on 11 January 2026).

**Table 13.** Extracted FTIR peaks from Figure 7 used for step-by-step interpretation

| No | Approx. wavenumber (cm <sup>-1</sup> ) | Peak characteristic | Part | Wavenumber in reference (cm <sup>-1</sup> ) | Companion peak(s) | Assignment                       | Interpretation role      |              |
|----|----------------------------------------|---------------------|------|---------------------------------------------|-------------------|----------------------------------|--------------------------|--------------|
| 1  | ~3276                                  | Broad, strong       | V    | 3200–3600                                   | Peak No. 3 (1709) | O–H stretching (hydrogen-bonded) | Identifies groups        | hydroxyl     |
| 2  | ~2937–2906                             | Sharp, medium       | V    | 2850–2970                                   | Peaks No. 4–6     | Aliphatic C–H stretching         | Indicates backbone       | alkyl        |
| 3  | ~1709                                  | Strong, sharp       | III  | 1700–1750                                   | Peaks No. 1 & 4   | C=O stretching                   | Primary functional group |              |
| 4  | ~1664–1560                             | Medium              | III  | 1550–1650                                   | Peak No. 3        | Conjugated C=O / C=C             | Supports conjugation     |              |
| 5  | ~1420–1322                             | Medium              | II   | 1300–1450                                   | Peak No. 2        | CH bending vibrations            | Fingerprint support      | alkyl        |
| 6  | ~1236–1026                             | Strong              | II   | 1000–1300                                   | Peaks No. 1 & 3   | C–O stretching                   | Oxygenated backbone      |              |
| 7  | ~915–839                               | Sharp, weak         | II   | 800–950                                     | Peaks No. 2 & 4   | C–H out-of-plane bending         | Structural support       |              |
| 8  | ~548–408                               | Weak                | I    | 400–700                                     | Peaks No. 5–7     | Skeletal deformation modes       | Final framework          | confirmation |


### 5.7. Case 7: Alkyl halide (C–Br, brominated alkyl)

The FTIR spectrum of the representative material is shown in **Figure 8** and is interpreted using the step-by-step workflow based on the master FTIR dataset.

To simplify the interpretation of halogenated organic materials, the analysis in this section focuses only on a limited number of diagnostically significant features rather than exhaustive peak listing. In particular, emphasis is placed on the presence of strong absorption bands in the low-frequency region (PART I, 400–700 cm<sup>-1</sup>), which play a decisive role in distinguishing alkyl halides from non-halogenated aliphatic compounds.

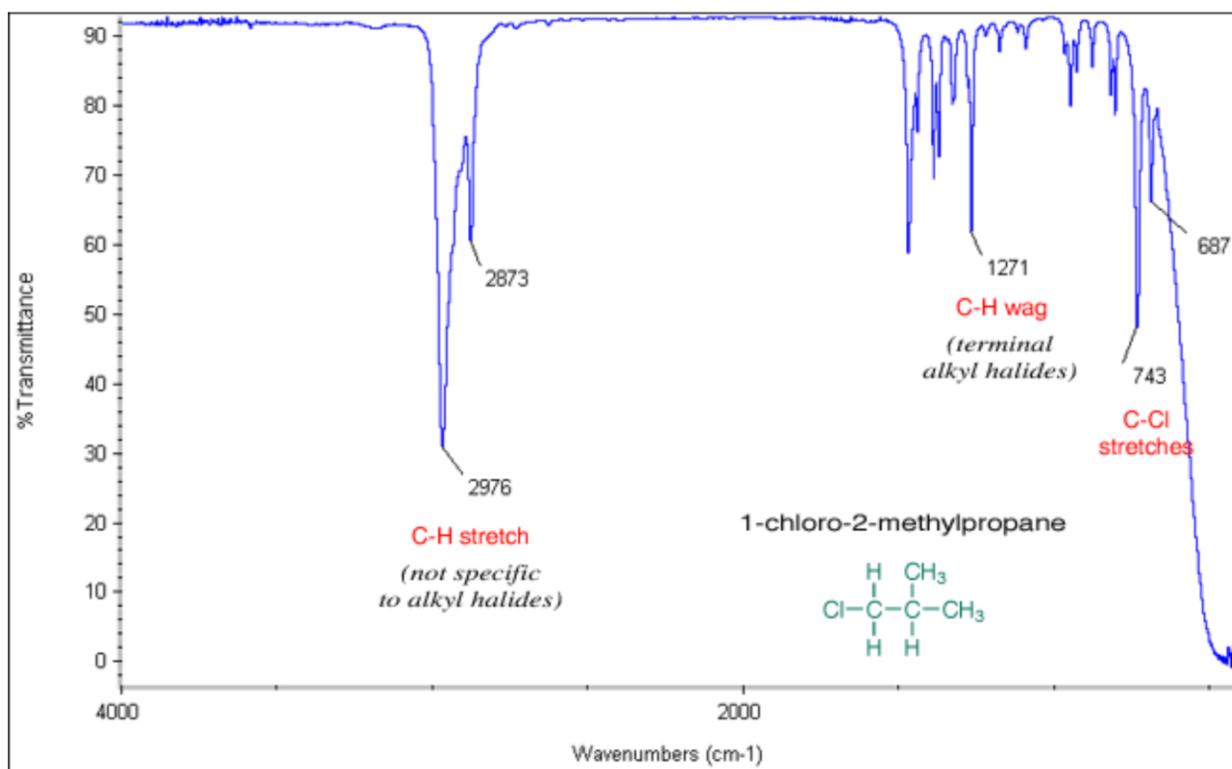
- (i) **Step 0. Spectral quality check.** The spectrum covers the full FTIR range (4000–400 cm<sup>-1</sup>) with a stable baseline and clearly resolved absorption bands. The spectrum quality is adequate for systematic interpretation. The extracted absorption peaks used for the step-by-step analysis are summarized in **Table 14**.
- (ii) **Step 1. High-frequency region (PART V, 2500–4000 cm<sup>-1</sup>).** Strong absorption bands are observed at approximately 2976 and 2940 cm<sup>-1</sup>, which correspond to aliphatic C–H stretching vibrations. No absorption bands are present above 3000 cm<sup>-1</sup>, indicating the absence of aromatic or olefinic C–H groups. In addition, no broad O–H or N–H stretching bands are detected in the 3200–3600 cm<sup>-1</sup> region.

- (iii) **Step 2. Double-bond region (PART III, 1500–1800 cm<sup>-1</sup>).** No strong absorption bands characteristic of carbonyl (C=O) or C=C stretching are observed in this region. This indicates that double-bond functionalities are not present in the molecular structure.
- (iv) **Step 3. Triple-bond and cumulative multiple-bond region (PART IV, 1800–2500 cm<sup>-1</sup>).** No diagnostic absorption bands are detected in the triple-bond region, excluding the presence of nitrile, alkyne, or cumulative multiple-bond groups.
- (v) **Step 4. Fingerprint region (PART II, 700–1500 cm<sup>-1</sup>).** Distinct absorption bands are observed at approximately 1291 and 1230 cm<sup>-1</sup>. These bands are assigned to C–H wagging vibrations, which are commonly associated with terminal alkyl halides (–CH<sub>2</sub>X). This fingerprint feature is particularly important because it helps differentiate alkyl halides from non-halogenated alkanes.
- (vi) **Step 5. Low-frequency region (PART I, 400–700 cm<sup>-1</sup>).** A strong absorption band is observed at approximately 651 cm<sup>-1</sup>, which is characteristic of C–Br stretching vibrations. The presence of this low-frequency band provides direct and definitive evidence for a brominated alkyl structure.



**Figure 8.** FTIR spectrum of a representative material, Case 7. The figure was adopted from reference (<https://orgchemboulder.com/Spectroscopy/irtutor/alkhalidesir.shtml>; accessed and updated on 11 January 2026).

**Table 14.** Extracted FTIR peaks from Figure 8 used for step-by-step interpretation


| No | Approx. wavenumber (cm <sup>-1</sup> ) | Peak characteristic | Part   | Wavenumber in reference (cm <sup>-1</sup> ) | Companion peak(s)                    | Assignment                       | Interpretation role                        |
|----|----------------------------------------|---------------------|--------|---------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------------|
| 1  | ~2976–2940                             | Sharp, strong       | V      | 2850–3000                                   | Peak No. 3–4 (alkyl bending/wagging) | Aliphatic stretching             | C–H Identifies alkyl backbone              |
| 2  | ~1291                                  | Medium              | II     | 1250–1350                                   | Peak No. 5 (C–Br stretching)         | C–H wagging (–CH <sub>2</sub> X) | Diagnostic for alkyl halide                |
| 3  | ~1230                                  | Medium              | II     | 1200–1300                                   | Peak No. 5 (C–Br stretching)         | C–H wagging (–CH <sub>2</sub> X) | Supports terminal halogen substitution     |
| 4  | ~651                                   | Strong, sharp       | I      | 600–700                                     | Peaks No. 2–3 (CH wagging)           | C–Br stretching                  | Direct identification of brominated alkyl  |
| 5  | –                                      | –                   | III/IV | –                                           | Absence of C=O / C≡N                 | –                                | Excludes carbonyl and multiple-bond groups |

### 5.8. Case 8: Alkyl halide (C–Cl, chlorinated alkyl)

The FTIR spectrum of the representative material is shown in **Figure 9** and is interpreted using the step-by-step workflow based on the master FTIR dataset. To simplify the interpretation of halogenated organic materials, the analysis in this section focuses only on a limited number of diagnostically significant features rather than exhaustive peak listing. In particular, emphasis is placed on the presence of strong absorption bands in the low-frequency region (PART I, 400–700 cm<sup>-1</sup>), which play a decisive role in distinguishing alkyl halides from non-halogenated aliphatic compounds.

- (i) **Step 0. Spectral quality check.** The spectrum covers the full FTIR range (4000–400 cm<sup>-1</sup>) with a stable baseline and clearly resolved absorption bands. No significant artefacts are observed, indicating that the spectrum is suitable for systematic interpretation. The extracted absorption peaks used for the step-by-step analysis are summarized in **Table 15**.
- (ii) **Step 1. High-frequency region (PART V, 2500–4000 cm<sup>-1</sup>).** Strong absorption bands are observed at approximately 2976 and 2873 cm<sup>-1</sup>, which correspond to aliphatic C–H stretching vibrations. No absorption is detected above 3000 cm<sup>-1</sup>, indicating the absence of aromatic or olefinic C–H groups. In addition, no broad bands are present in the 3200–3600 cm<sup>-1</sup> region, excluding O–H or N–H functionalities.
- (iii) **Step 2. Double-bond region (PART III, 1500–1800 cm<sup>-1</sup>).** No strong absorption bands characteristic of carbonyl (C=O) or C=C stretching are observed in this region. This confirms the absence of double-bond-containing functional groups.

- (iv) **Step 3. Triple-bond and cumulative multiple-bond region (PART IV, 1800–2500 cm<sup>-1</sup>).** No diagnostic absorption bands are detected in this region, excluding nitrile, alkyne, or cumulative multiple-bond functionalities.
- (v) **Step 4. Fingerprint region (PART II, 700–1500 cm<sup>-1</sup>).** A characteristic absorption band is observed at approximately 1271 cm<sup>-1</sup>, which is assigned to C–H wagging vibrations associated with terminal alkyl halides (–CH<sub>2</sub>X). This band serves as an important fingerprint feature for identifying halogenated alkyl chains.
- (vi) **Step 5. Low-frequency region (PART I, 400–700 cm<sup>-1</sup>).** Distinct absorption bands are observed at approximately 743 and 687 cm<sup>-1</sup>. These bands are characteristic of C–Cl stretching vibrations. The presence of these low-frequency bands provides definitive evidence for a chlorinated alkyl structure.



**Figure 9.** FTIR spectrum of a representative material, Case 8. The figure was adopted from reference (<https://orgchemboulder.com/Spectroscopy/irtutor/alkhalidesir.shtml>; accessed and updated on 11 January 2026).

**Table 15.** Extracted FTIR peaks from Figure 9 used for step-by-step interpretation

| N<br>o | Approx.<br>wavenumber<br>r (cm <sup>-1</sup> ) | Peak<br>characteristi<br>c | Part       | Wavenumber<br>r in<br>reference<br>(cm <sup>-1</sup> ) | Companio<br>n peak(s)                   | Assignmen<br>t                          | Interpretatio<br>n role                |
|--------|------------------------------------------------|----------------------------|------------|--------------------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|
| 1      | ~2976–2873                                     | Sharp, strong              | V          | 2850–3000                                              | Peak No. 3<br>(C–H<br>wagging)          | Aliphatic C–<br>H<br>stretching         | Identifies alkyl<br>backbone           |
| 2      | ~1271                                          | Medium                     | II         | 1250–1350                                              | Peak No.<br>4–5<br>(C–Cl<br>stretching) | C–H<br>wagging (–<br>CH <sub>2</sub> X) | Diagnostic for<br>alkyl halide         |
| 3      | ~743                                           | Strong, sharp              | I          | 700–800                                                | Peak No. 2<br>(C–H<br>wagging)          | C–Cl<br>stretching                      | Primary<br>evidence of<br>chlorination |
| 4      | ~687                                           | Medium                     | I          | 600–700                                                | Peak No. 2                              | C–Cl<br>stretching                      | Supporting<br>halogen<br>confirmation  |
| 5      | –                                              | –                          | III/I<br>V | –                                                      | Absence of<br>C=O / C≡N                 | –                                       | Excludes<br>multiple-bond<br>groups    |

## 6. FUTURE PERSPECTIVE: INTEGRATION WITH DATA-DRIVEN AND AI-BASED ANALYSIS

The master FTIR dataset developed in this study is not limited to manual or expert-based interpretation. Its structured organization into spectral regions, functional group classifications, peak characteristics, and correlated peak families makes it directly suitable for integration into data-driven frameworks. Such structured datasets are essential prerequisites for the development of AI and ML models for automated FTIR interpretation.

The step-by-step workflow presented in this work can serve as a rule-based foundation for feature extraction, labeling, and training dataset construction. Peak families and correlation rules can be translated into supervised learning labels, while spectral regions can be used to guide region-specific feature engineering. This approach is particularly relevant for polymer systems, composite materials, and hybrid organic–inorganic structures, where conventional peak-matching algorithms often fail.

In future applications, the master dataset may support the development of intelligent FTIR systems capable of automated functional group identification, material classification, and anomaly detection. Integration with AI and ML tools has the potential to enhance reproducibility, reduce operator dependency, and accelerate materials screening in chemical engineering, materials science, and particle technology. Therefore, the dataset presented in this study provides not only an interpretative guide but also a foundational resource for next-generation FTIR analysis platforms.

## 7. CONCLUSION

This study introduces a master FTIR dataset integrated with a step-by-step peak-correlation workflow to improve the clarity, consistency, and reliability of FTIR spectrum interpretation. By organizing FTIR information into five spectral regions and emphasizing correlated peak families rather than isolated bands, the proposed approach reduces misinterpretation, particularly for complex materials such as polymers, blends, and functionalized systems. Representative case studies demonstrate the applicability of the

method across a wide range of materials. Importantly, the structured nature of the dataset enables future extension toward data-driven and artificial intelligence-based FTIR analysis. As such, this work serves not only as a practical guide for manual interpretation and education but also as a foundational dataset for the development of automated and intelligent materials characterization tools.

## 8. AUTHORS' NOTE

The authors declare that there is no conflict of interest regarding the publication of this article. Authors confirmed that the paper was free of plagiarism.

## 9. REFERENCES

Al-Amin, K., Kawsar, M., Mamun, M. T. R. B., & Hossain, M. S. (2025). Fourier transform infrared spectroscopic technique for analysis of inorganic materials: a review. *Nanoscale Advances*, 7(21), 6677-6702.

Bacsik, Z., Mink, J., and Kereszty, G. (2004). FTIR spectroscopy of the atmosphere. I. Principles and methods. *Applied Spectroscopy Reviews*, 39(3), 295-363.

Barnes, M., Sulé-Suso, J., Millett, J., & Roach, P. (2023). Fourier transform infrared spectroscopy as a non-destructive method for analysing herbarium specimens. *Biology Letters*, 19(3), 20220546.

Berthomieu, C., and Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. *Photosynthesis Research*, 101(2), 157-170.

Nandiyanto, A. B. D., Oktiani, R., and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. *Indonesian Journal of Science and Technology*, 4(1), 97-118.

Nandiyanto, A. B. D., Putri, A. R., Pratiwi, V. A., Ilhami, V. I. N., Kaniawati, I., Kurniawan, T., Farobie, O., and Bilad, M. R. (2024a). Fourier transform infrared spectroscopy (FTIR) of pyrolysis of polypropylene microparticles and its chemical reaction mechanism completed with computational bibliometric literature review to support sustainable development goals (SDGs). *Journal of Engineering Science and Technology*, 19(3), 1090-1104.

Nandiyanto, A. B. D., Ragadhita, R., and Fiandini, M. (2023). Interpretation of Fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. *Indonesian Journal of Science and Technology*, 8(1), 113-126.

Nandiyanto, A. B. D., Xyla, S. L., Risnandar, M. J. A., Putri, L. A., Kaniawati, I., Kurniawan, T., Farobie, O., and Bilad, M. R. (2024b). FTIR Analysis of pyrolysis of Polyethylene Terephthalate (PET) Plastic and Its Pyrolysis Mechanism Completed with Bibliometric Literature Review for Supporting Current Issues in Sustainable Development Goals (SDGS). *Journal of Engineering Science and Technology*, 19(4), 28-40.

Schmitt, J., and Flemming, H. C. (1998). FTIR-spectroscopy in microbial and material analysis. *International Biodeterioration and Biodegradation*, 41(1), 1-11.

Zhang, W., Yin, L., Zhao, M., Tan, Z., & Li, G. (2021). Rapid and non-destructive quality verification of epoxy resin product using ATR-FTIR spectroscopy coupled with chemometric methods. *Microchemical Journal*, 168, 106397.