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A B S T R A C T   A R T I C L E   I N F O 

The biggest candidate for climate change is the emission of CO2 
during the burning of fossil fuels and researchers are trying to 
capture this CO2 efficiently and utilization effectively. This 
review highlights the parametric effects on conversion, 
utilization, and selectivity in CO2 hydrogenation via the Fischer-
Tropsch method using various catalysts. Collecting the data 
from reported studies as datasets for quantum mechanical-
based simulation software such as DFT and Monte Carlo were 
employed to probe the characteristics of catalysts, the 
discovery of novel catalysts, theoretical models for utilization 
of catalysts and parameters for CO2 hydrogenation such as 
operational, catalyst information, and mass transfer. Two 
syntheses such as methanol and methane were studied 
extensively via machine learning techniques. How artificial 
intelligence can help experimentalists for finding new catalysts 
has been discussed and how one can understand the catalytic 
features in a better way. Furthermore, the key challenges in 
CO2 hydrogenation technology and future directions based on 
artificial intelligence have been discussed thoroughly.  
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1. INTRODUCTION 

In recent decades, humans have faced serious environmental problems i.e. sea-level rise, 
ocean acidification, species extinction, and global warming due to the emission of CO2 in 
massive quantity (Asif et al., 2023). The exponential trend of emission of CO2 gas and 
subsequent temperature values have turned to 35 billion tons annually worldwide while its 
global concentration has reached up to 410 ppm, as shown in Figures 1 and 2 (see 
https://ourworldindata.org/co2-and-greenhouse-gas-emissions; Zhong et al., 2020). Now, 
the world is taking these tasks such as energy conservation, emission, and conversion 
seriously (Khan et al., 2024a; Khan et al., 2024b; Ahmed et al., 2024). Scientists are working 
on new techniques and strategies for the reduction of excess CO2 to tackle these issues (He 
et al., 2022). Due to improvements in this field, researchers have a huge interest in this field. 
Here, the purpose of this study was to review current studies in the machine learning-based 
CO2 hydrogenation to high-value green fuels. We made a comprehensive review for 
computational assessment. 

 

Figure 1. Globally average temperature anomaly (Liu et al., 2022). 

 

Figure 2. Globally per capita CO2 emissions (Zhong et al., 2020). 

https://ourworldindata.org/co2-and-greenhouse-gas-emissions
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2. METHOD 
 

This review paper was made from data taken from internet literature. Specifically, we took 
data from articles published in international journals. Data was then collected to get 
information and concluded to make this review paper. 

3. RESULTS AND DISCUSSION 
3.1. Brief Overview of CO2 Hydrogenation 

The CO2 conversion is done commonly three ways electrocatalytic, photocatalytic, and 
thermos-catalytic (Huang et al., 2024; Han et al., 2022; Min et al., 2024; Jian et al., 2024; Yang 
et al., 2023; Vos & Koper, 2024; Verma & Fu, 2024; Wang et al., 2023; Zhu et al., 2022; Wang 
et al., 2021l Kattel et al., 2017). In all routes, thermos-catalytic is considered best because of 
its industrial applications and high efficiency. The raw material for the hydrogenation reaction 
is hydrogen and the water photo/electrolysis mechanism are used to produce the green 
hydrogen. Using green-based hydrogen for greenhouse-gas hydrogenation from the thermos-
catalysis method is counted as an efficient way to resolve the above-mentioned issues. This 
CO2 hydrogenation field has caught much attention as green hydrogen and CO2 capture 
technologies have been developed (Nakamura et al., 2017). 

This emergent CO2 hydrogenation technology isn’t reducing CO2 concentration only but 
helps to synthesize beneficial fuels or chemicals like olefins, gasoline, alcohol, aromatics, etc. 
There are two pathways mainly for the reaction mechanism of CO2 hydrogenation such as 
CO2-based Fischer-Tropsch method (FTM) and methanol (MeOH)-assisted technique (Tang et 
al., 2024; Asif et al., 2022; Hassan et al., 2023). In the first technique, CO2 is used to generate 
CO with the help of a reverse water-gas shift reaction (RWGS). 

CO2 + H2 → CO + H2O             (1) 

Hydrocarbons are produced from FTM after the RWGS reaction which helps to convert 
huge quantities of CO2. More conversions can be done via the Anderson-Schulz-Flory (ASF) 
method. The selectivity of diesel, C2-C4 hydrocarbons, jet fuel (C8-C16), and gasoline (C5-C11) 
are limited to 40, 58, 41, and 48%, respectively (Carrasco-Garcia et al., 2024). In the methanol-
assisted technique, CO2 hydrogenation is used to produce MeOH first and then chemically 
reacts via coupling reactions and dehydration to produce hydrocarbons. That’s why, various 
MeOH-based methods have been established such as MeOH-to-gasoline (MTG), MeOH-to-
olefins (MTO), and MeOH-to-aromatic (MTA) approaches. This route results in high yield 
selectivity with slow kinetics during the reaction time. The MeOH route demands dual-active 
sites for the generation and conversion of MeOH while the second step involves a 

temperature of about 300-500C which is quite high for its synthesis. Therefore, each route 
and every step (MeOH or CO2-FTS) have pros and cons.  

3.2. Importance of CO2 Utilization and Hydrogenation 

The technology of CO2 hydrogenation via the thermos-catalytic method has been 
dependent upon modern designs of catalysts as well as novel reaction routes. This also relies 
on the carbon-capture (CC) and green-hydrogen (GH) technologies. The CC technology 
discloses many doors for CO2 utilizations like via chemical valorization of CO2 route with GH 
(Mahnaz et al., 2024; Zhou et al., 2024; Dostagis et al., 2024). Due to this technology, the fuels 
are economically and practically converted into various stuff such as e-gas or e-gas via the 
FTM approach which helps to produce various types of chemical building blocks. Despite 
many industrial advantages, there are still some challenges because of the internal complexity 
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involved during the reaction and it demands stunning research and developmental efforts 
(Baddour et al., 2020). A better understanding of this system, the top-down rules, simulations, 
and models are selected commonly, but still, some complexities make this challenging.  

3.3.  Introduction of Artificial intelligence (AI) and Its Potential in Catalysis 

Nowadays artificial intelligence (AI) is been considered the best and potential candidates 
will compete in this race. AI works based on the availability of experimental and statistical 
data and offers a different path to solve problems up to maximum precision and accuracy. It 
collects the data first and then uses algorithms to solve with a scientific approach, 
understanding, mathematical equations, patterns, and rules. Many scholars have done 
pioneering work to utilize AI in a better way. A data-information-knowledge hierarchy module 
was proposed by Andrew et al., utilizing the previously published data which keeps a vast type 
of catalysts for various types of heterogeneous reactions (Medford et al., 2018). Some 
researchers studied the catalytic procedure in light of catalytic data and design via data 
science and established new ways of correlation (Takahashi et al., 2019). The in-situ carbon-
assisted CO activation process based on the machine learning (ML) technique in the FTM 
approach was studied by Liu et al., (2021). Similarly, the ML technique was used by Motaev 
et al., to fabricate a model to link property and objective parameters using cobalt catalyst in 
the FTM approach (Motaev et al., 2023). Due to the internal complexities of the FTM 
approach, modern and deep efforts are needed to correlate features from the catalyst with 
other valuable parameters like temperature, pressure, gas hour space velocity (GHSV), 
unitless numbers, etc. So, based on ML technology, one can make useful and meaningful 
predictions.     

3.4. Fundamentals of CO2 Hydrogenation  

Favorably, two major steps either RWGS and FTM techniques are followed for CO2 
hydrogenation, whereas the direct reaction is considered marginal (Krausser et al., 2024). The 
RWGS reaction contains two major reaction mechanisms such as redox and associative 
mechanisms. The redox is suitable for reaction over metal oxides while associative is suitable 
for iron-based catalysts (by introducing the production of formate). In both these techniques 
(RWGS and FTM), RWGS helps in the conversion of CO2 with fast kinetics, specifically for iron-
assisted catalysts, forming the FTM technique as a fundamentally rate-determining step (RDS) 
of whole reactions.  

3.4.1. Chemical reactions involved 

There are the following possible main products that can be produced in CO2 
hydrogenation. The Equations 2-5 identify the CO production via the RWGS mechanism while 
FTM synthesis refers to the generation of 1-alkenes, n-alkanes, and alcohols. Besides 
traditional polymerization reactions, during FTM synthesis, the reactants (CO & H2) need to 
be converted into monomers first and initiators on the active catalytic sites, and after this 
further happens to the polymerization process for FTM synthesis. 

CO2 + H2 ↔ CO + H2O             (2) 

CO + 2H2 → 
1

𝑛
 CnH2n + H2O            (3) 

CO + 
2𝑛+1

𝑛
 H2  → 

1

𝑛
 CnH2n + 2 + H2O           (4) 

CO + 2H2 → 
1

𝑛
 CnH2n+1OH + 

𝑛−1

𝑛
 H2O                  (5) 
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3.4.2. Catalytic mechanisms 

Generally, there are two types of mechanisms namely one-path monomer & initiator and 
two-paths for initiation & propagation. Here, one path includes CO insertion, carbide, alkenyl, 
and enol, while two paths are associated with H-based dissociation and CO insertion-carbide, 
etc. A brief detailed investigation is summarized in Table 1.   

Table 1. A detailed comprehensive summary of different mechanism. 

Mechanism Monomer Initiator Supporting evidence Reference 
Carbide S-CH2 - Generation of Carbide on various 

metals 
Tavasoli et al. 
(2008)  

Enol S-CH-OH CHOH Initiator by alcohol & aldehyde Davis (2009)  
Formate CO S-OH Co-MgO catalyst & chain lengthening Schulz (2013)  
CO insertion S-CO S-CH3 Transients/back-transients of gaseous 

species 
Schweicher et 
al. (2012)  

Alkyl S-CH2 S-CH3 C2 is mainly ethylene in noble gas Maitlis (2004)  
Alkenyl S-CH2 S-CH2=CH2 Same PD with 1-alkene Overett et al. 

(2000)  
AHM S-CH+S-H S=CH-CH2-S CH+H as a monomer by D trace 

analysis 
Ciobıĉă et al. 
(2002)  

H-based CO 
dissociation 

S-CO+S-H - DFT & isotropic studies Loveless et al. 
(2013)  

CO insertion-
carbide 

S-CH2+S-
CO 

S-CH3 Alcohol probes co-feeding & dual ASF 
superposition 

Chai et al. 
(2023)  

CO insertion-
CLD model 

S-CO S-CH3 Exponential descending O/P ratio Kuipers et al. 
(1995)  

Carbide-non-
CLD model 

S-CH2 - O/P independent to C-number on alloy 
catalyst 

Sun et al. 
(2021)  

 
The deep advantages of adopting top-down simulations, rules, and models are clear and if 

this yields better regression fitting against experimental and statistical databases, then the 
above-mentioned mechanisms could be logically and effectively applied in explaining 
experimental outcomes. Moreover, there are some other complex and accurate mechanisms 
like two-pathway mechanisms can be disclosed by researchers visualizing the internal 
complexities of CO2 hydrogenation via the FTM technique. This two-pathway procedure adds 
a few simultaneous independent pathways-initiations, propagation, and then termination 
using an iron-assisted catalyst to prove the development in experimental analytical 
instruments and theoretical tools. Schulz and Visconti contributed to get better 
understanding of reaction mechanisms (Schulz, 2020). There are three independent active 
site mechanisms have been accepted for iron-assisted catalysts, from which RWGS is run by 
Fe3O4, the chain propagation helps to form the main hydrocarbons by carbide/Fe, and Fe 
metal is considered a key factor behind olefin re-adsorption & secondary hydrogenation (Han 
et al., 2020; Nie et al., 2016; Asif et al., 2023). Both the metal Fe and carbide/Fe are essential 
for the production of main products, which are critical for the FTM pathway. For all growing 
products, using constant chain growth probability 𝛼, the renowned Anderson-Schulz-Flory 
(ASF) distribution is found as: 

Xn = (1+ 𝛼) 𝛼n-1             (6) 

where Xn denotes the molar fraction of species and n is the carbon number. Based on the 
mechanistic hypothesis, the two most common top-down models are being followed, which 
are the Langmuir-Hinshelwood-Hougen-Watson (LHHW) models and power law models. The 
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information related to individual product generation rate is accessed by LHHW models, its 
internal complexities like Byzantine assumptions for active intermediates. Till now, limited 
work has been done on this model because it limits its practical-based direct applications in 
directly shorting the reactor (Teng et al., 2006; Mousavi et al., 2015). While on the opposite 
side, power-law models are much more practical because of their internal simplicity for 
designing the reactor (Elbashir et al., 2020). Other than the kinetics of power law expression, 
the generation of monomers during CO2 hydrogenation is a crucial step, which is 
approximately associated with RWGS so far. That’s why, when studying the conversion of CO2 
and its selectivity i.e. CO and CH4 would be helpful to understand the chain initiation 
mechanism. The hydrogenation of CO2 is done via different catalytic techniques, as shown in 
Figure 3.  

 

Figure 3. Different catalytic techniques for CO2 hydrogenation. 

3.5.  Role of Artificial Intelligence (AI) in CO2 Hydrogenation 

The concurrent study of CO2 hydrogenation from catalyst design to reaction variables 
analysis has gained much attention in the recent two decades. So, its study based on 
conventional literature or based on meta-analysis is no more helpful in this field, so, 
researchers are turning towards tools and concepts of machine learning (ML).  

3.5.1. Machine learning (ML) for catalyst design 

ML can be helpful a lot to coming up with constructive and valuable knowledge after 
setting up the database for one time only (Zavyalova et al., 2011; Toyao et al., 2020). This 
creative knowledge can be extended via either descriptive/statistical analysis of data. 
Predictive analytics helps to extract the performance and efficiency of the catalytic process 
under various input conditions and parameters, and it leads to identifying the most accurate 
and relevant descriptors that affect the catalytic process (Li et al., 2021; Smith et al., 2020). 
However, only a few updates or efforts were reported about the inclusion of ML in catalysis 
(Li et al., 2021; Smith et al., 2020; Nguyen et al., 2019; Şener et al., 2018). These works have 
their pros and cons due to the limited availability of models and less interpretability as well 
as experimental validation limits the outcomes. To introduce data science in catalysis, the ML 

 



201 | ASEAN Journal for Science and Engineering in Materials, Volume 3 Issue 2, September 2024 Hal 195-216 

DOI:  

p-ISSN: 2828-3309X e-ISSN: 2828-3236 

models are considered to be explainable and they should rationalize the predictions of the 
model, which would help for deep analysis to experimental experts for experiment validation 
and guiding thoroughly.  

Two major categories have been defined for interpretable ML methods such as grey-box 
ML methods and glass-box ML methods. In these, grey-box ML methods are considered a 
combination of black-box algorithms which includes neural networks, tree-assisted and 
ensemble algorithms, followed by posterior feature-based analysis, while glass-box methods 
are fundamentally interpretable ML algorithms which include generalized additive, linear, or 
symbolic models (Esterhuizen et al., 2022). Both these models have their own merits and 
demerits but the grey-box ML methodology is widely accepted for catalytic purposes (Suzuki 
et al., 2019). This may be due to the outperformance of black-box models in glass-box 
algorithms for computational precision for complex and large datasets, whereas feature-
based analysis helps to interpret the patterns and relations gained by black-box models via 
local or global explanations (Kumar & Singh, 2021; Ahmed et al., 2023; Zeb et al., 2023). Based 
on these deep insights, the practitioners become enable to quantify the relative importance 
of various descriptors and help to attain the highest predictive efficiency and performance. 
For supervised learning, the inherently interpretable ML algorithms produce math free-form 
formulas as input features and these formulas and equations don’t imply causality but lead 
to translation of their critical and analytical statements for practical-based applications. 
Furthermore, they help to guide the experiments or transfer learning where the focus is set 
on scientific development at a high level of accuracy (Asadzadeh et al., 2021).     

3.5.2. Computational simulations 

Commonly, there are two methods for simulations prominent in the research community 
such as grand canonical Monte Carlo (GCMC) and density functional theory (DFT). Several 
points are the following: 
(i) Quantum mechanism-based modeling. Monte Carlo runs randomly to sample a 

statistical mechanical ensemble for the computation of average equilibrium quantities. 
Here, researchers are interested in DFT-based simulations which is a quantum 
mechanical (QM) tool used for computational analysis of electronic structures and 
energies of many particle systems. This is based on the Schrodinger wave equation for 
the N-electron system, although many terms are functions of electron density instead 
of functions of positions of all the existing electrons (Hohenberg & Kohn, 1964; Kohn & 
Sham, 1965; Tariq et al., 2023). A significant contribution is made by electronic energies 
in the internal energies of systems, therefore DFT can provide a better insight to probe 
these energies with the QM approach. Additionally, DFT is appreciated in quantifying 
the chemical bonding and its calculations are more realistic and reliable than physical 
or chemical-based results. 

(ii) High-throughput screening techniques. For in-depth characterization of individual 
catalysts, researchers need more advanced and smart resources. In this respect, DFT 
helped to boost the activity of discovering new materials through discovering structure 
and activity relationships (Goldsmith et al., 2018). For the discovery of new catalysts 
with the help of QM methods in screening processes, the biggest challenge is the high 
computational cost so far (Nørskov et al., 2009). The conventional type of simulation 
guidelines contains a systematic exploration and explanation of reaction mechanisms, 
which can be somehow hectic because they need highly experienced modelers’ careful 
interventions which makes them quite challenging for high-throughput screening 
purposes. One of the widely accepted mechanisms allows for predicting the critical rate-
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limiting steps, however, researchers are trying to replace the quest for highly expensive 
with a high-throughput simulation-friendly, and data-driven protocol. These protocols 
should contain simulated and chemically corresponding intermediate adsorption 
energies of reactions on desired surface-active sites. The combination of relevant 
experimental parameters and generic descriptors is further coupled with targeted 
response parameters to probe the rules and regulations of design with critical key 
parameters (Pablo-Garcia et al., 2022; Saadun et al., 2020). Then these rules and 
regulations keep the responsibility of lowering the number of configurations that are 
needed, which ultimately tends to reduce the computational cost and in return 
increases the speed of prediction. 

3.6. Applications and Case Studies  
3.6.1. Methanol synthesis 

Here, we present a workflow, which is a combination of experimentation and high-
throughput computation that involves of ML algorithm as shown in Figure 4. Using this 
workflow, one can identify the rules and descriptors, which hold the desired power of 
prediction for the potential development of new catalytic species. Here one thing must be 
noted no prerequisite knowledge about curated reaction steps is required by this protocol, 
but one can proceed by having general knowledge of possible intermediates. Therefore, this 
protocol is much worthy for novel catalyst compositions where one lacks experimental proof 
of reaction mechanisms, so data-driven identification can help for insight study on 
hypothesized mechanism very quickly. For simplicity, we keep methanol as the desired target 
species here, which is the best substitute for clean and green fuel and can help produce new 
chemical commodities (Sharma et al., 2021; Martin et al., 2016). For CO2 hydrogenation, 
In2O3/ZrO2 is set as the benchmark system of catalysts because its stability is much 
appreciable under CO2-rich conditions as compared to Cu-based catalysts (Khatamirad et al., 
2023; Dang et al., 2020). 

 

Figure 4. Schematic illustration of the workflow of work (Khatamirad et al., 2023). 
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Here we discuss a case study in which a simple promotion strategy was adopted having 13 
different types of promoters varying from transition to post-transition metals for the 
synthesis of In-modified catalysts from the co-impregnation method (Trunschke, 2022). For 
the production of catalysts, the molar ratio of promoter: In = 1:3 was utilized, and ZrO2 was 
firstly ground and then sieved to achieve a targeted fraction of 250-315 𝜇m. For con-
impregnation of 13 co-promoter as well as impregnation of In, the already ground and sieved 
ZrO2 product was mixed with a hydrated nitrate solution having In and respective co-
promoter.  

After this, evaporation of the solvent was done, and calcination at 300C was done. For the 
catalytic test, a 16-fold parallel reactor in the gas phase in Germany was used, first, it was 
filled with 0.5 ml of a pre-calcined catalytic product having pre-/post-bed of corundum. In 
each reactor, the product was reduced under these ratios H2 : N2 : Ar = 30 : 60 : 10, and then 
checked for CO2 hydrogenation to methanol formation. For this reaction, different 
parameters such as pressure were 80 bar, three different values of temperature (225, 250, 
and 275 oC), total flow = 48 Lh-1, and CO : CO2 : H2 = 1.9 : 17.1 : 76. Using in-line TCD-GS, the 
yields were calculated and data out of thermodynamic equilibrium was followed, while above 
275 oC temperature was ignored in this screening. For catalytic efficiency and performance, 
one can establish a descriptive model considering the behavior of active catalyst under-lined 
reaction conditions.  

Here, the classical approach may demand extensive operation characterization as well as 
multi-level theoretical concepts (Trunschke, 2022; Weckhuysen & Yu, 2015; Urakawa, 2016). 
Therefore, DFT is very valuable here, and to develop the model, an oxygen vacancy was 
constructed on (110) site of cubic In2O3 and then chemical impact promoters were introduced 
by shifting one in atom at oxygen vacancy by promoter. All of the intermediates probed this 
site as well as two competing routes for methanol and CO formation. On the DFT level, a total 
of 1350 intermediate relaxations were tested and adsorption and formation energies were 
calculated for each 14 catalysts one by one. Finally, a correlation was done among CO 
formation, methanol formation routes, and energies of each possible intermediate in the 
form of a bivariate correlation matrix to identify pairs of descriptors (Siddiqi et al., 2022; 
Ahmed et al., 2021). Here, the Pearson coefficient was found close to 0.9 and 27 DFT out of 
92 descriptors were not correlated. 

There are still other descriptors that have a strong effect on the catalytic performance and 
these correlations might be linear but not in all cases. Thus, for non-linear correlations to 
develop a predictive model for methanol synthesis, a sure independence screening and 
sparsifying operator (SISSO) algorithm was used (Ghiringhelli et al., 2017). This algorithm gives 
the mathematical form of a targeted feature which is further a function of non-linear variables 
related to input (Ghiringhelli et al., 2015; Aonishi et al., 2022; Jung & Hu, 2015).  

Here, the inputs were reaction temperature T and 27 DFT-oriented descriptors and to 
represent non-linearity secondary descriptor term was used. Two parameters determine the 
complexities of the model such as some possible mathematical functions for the creation of 
secondary descriptors (O) and many non-zero coefficients or dimensions (D). Following the 
sensitivity of ML models for data scaling, first, the optimum model complexity and different 
pre-processing methods were performed to obtain the possible accuracy. Four different 
methods were reported to develop SISSO models having the reference complexity of 3D, and 
3O, and to validate their output, root mean square error (RMSE) was used as mentioned in 
Table 2.  
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Table 2. RMSE data obtained for the SISSO model with 3D, 3O (Zeb et al., 2023). 

Method employed 1 2 3 4 
RMSE-train 2.17 2.23 2.35 2.23 
RMSE-test 2.66 3.81 3.90 3.85 

 
To get numerical stability, all of these methods employed a common treatment of shift of 

Emin-E0 to whole computed values via DFT. Here, E0 is taken as a small but positive value to 
ensure the presence of non-zero values in the dataset while Emin is the minimum calculated 
adsorption energy. To scale all of the primary features, these methods were processed 
simultaneously at a time such as, (i) for each primary feature the scale values ranging from 0 
to 1, (ii) dividing each feature by the smallest one, (iii) replaced absolute T with log(T), (iv) 
wiped out T from features and divided all of the DFT-assisted values by ratio of T/T0, here T0 

= 225C, a lowest reaction temperature. The lowest RMSE values were obtained via the pre-
processing method for both train and test sets, therefore moving towards the SISSO model.  

After scaling, optimum model complexity is necessary to note because it defines the 
accuracy of the model. It is prohibited to do the overfitting and to develop a trade-off 
between generalization ability and model accuracy, the leave-one-group-out cross-validation 
method was adopted (Jung & Hu, 2015). Using this validation procedure, 16-level model 
complexity was considered and each group was allotted from one of the 14 processed 
catalysts. It means each validation is trained by a model having data from 13 different 
catalysts and checked with unseen data from the 14th catalyst. Furthermore, the average 
regression coefficient R2 was used to do the cross-validation performance across the trained 
models, and this method is globally accepted for the evaluation of ML models having smaller 
datasets.                    

Ymethanol = C1 × (T × A) + C2 × (
𝐵

𝐶
) + C3 × (

𝐷

𝐸
) + C4         (7) 

Here, A, B, C, D, and E are primary DFT features, T is reaction temperature, and C1, C2, C3, and 
C4 are fitting constants, and these obtained values are tabulated in Table 3. This Eq. (7) can 
show the performance of catalytic sites in DFT-derived and scaled descriptors. It further helps 
to notice impact performance and desired final product. For the establishment of design 
criteria to increase the catalytic performance, these primary and secondary features are 
utilized as potential descriptive parameters, and for this one needs a subgroup-discovery 
(SGD) algorithm. The results obtained from SGD ensure the reaction temperature and key 
features for developing the outstanding model and its performance as shown in Figure 5.   

Table 3. Parameters along with their respective values (Zeb et al., 2023). 

Parameter Value 
A Eads of linear CO2 
B Eads of linear CHO2 
C Eads of linear CO 
D Eads of linear CO2 
E Eads of linear CO + OH 
C1 49.48 
C2 -29.04 
C3 7.06 
C4 -18.40 
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Figure 5. (a) Evaluation data after cross-validation of each model, (b) Model accuracy, (c) 
measured constraints on SIS-based descriptors for subgroups, (d) SISSO-based structures of 

intermediates (Zeb et al., 2023). 

3.6.2. Methane synthesis 

The hydrogenation of CO2 leads to form methane, also called as Sabatier reaction, which 
converts a mixture of CO2 and 4H2 into water and methane. 

CO2 + 4H2 ↔ CH4 + 2H2O            (8) 

A great abundance of CO2 in the earth’s atmosphere is present due to industrial workouts 
or fossil fuel burning, so CS and GH technologies have been developed constantly (Zeb et al., 
2021; Riaz et al., 2018). Hence, it is certain that CS technology is a bit costly and has long-
lasting effects on environmental behavior. That’s why, CO2 methanation is obtaining the focus 
of scientists because it can use greenhouse gas and can produce green and clean fuel that will 
be enough to compete with energy demands for upcoming decades. It is obvious that H2 gas 
is costly but it can be synthesized using various methods and one of them is the splitting of 
water using solar or wind energy. Additionally, CH4 is easy to store and considered a high yield 
and energy density product that is fuel of efficient energy carrier. Thus, the conversion of CO2 
into methane is considered a hot area of research that may lead to the production of clean 
and green fuels in the future. The schematic illustration of CO2 capturing and conversion into 
energy and fuels is shown in Figure 6. 

 

Figure 6. Schematic illustration of methane synthesis. 
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Till now, researchers have tried many methods such as photo redox, plasma-assisted 
catalysis, photocatalysis, and electrochemical (Tahir & Tahir, 2020a; Tahir & Tahir 2020b; Gao 
et al., 2021; Azzolina-Jury, 2019; Manthiram et al., 2014; Alitalo et al., 2015; Ryu et al., 2017). 
Here are two possible mechanisms that have high yield, one is the formate technique and the 
second is the CO route. Formate technique is exothermic having -165.03 kJ/mol as standard 
enthalpy. 

CO2 + 4H2 ↔ CH4 + 2H2O → ∆H298 K = -165.03 kJ/mol                (9) 

During the above reaction, there are many possible ways to produce methane like reverse 
dry reforming reaction and CO methanation reaction. These reactions are possible if RWGS 
reaction takes place which helps to split carbon dioxide into carbon monoxide for further 
hydrogenation. The reaction kinetics involved in RWGS, CO methanation, and dry reforming 
reactions are shown in Eqs. (10-12). Respectively. Like the Formate technique, reverse dry 
reforming reaction and CO methanation both are exothermic while RWGS is endothermic 
(Rönsch et al., 2016l Vogt et al., 2019). Methanation of CO2 can be proceeded in two different 
ways, first is direct hydrogenation to produce H2O and methane, whereas second is the 
conversion of CO2 into CO, where subsequently the emitted CO is hydrogenated to produce 
CH4. At high temperatures, the RWGS is dominant which generates CO by-products as well as 
coke formation also happens. Thus, to elevate the yield of CH4 and reduce the coking level, 
the methanation reaction is ordered to proceed at relatively low temperatures. Low-
temperature hydrogenation enables the long-lasting of catalysts and saves them from 
degradation like agglomeration and sintering.  

CO2 + H2 ↔ CO + H2O → ∆H298 K = 41.17 kJ/mol                   (10) 

CO2 + 3H2 ↔ CH4 + H2O → ∆H298 K = -206.19 kJ/mol                   (11) 

CO2 + 2H2 ↔ CH4 + CO2 → ∆H298 K = -247.36 kJ/mol                    (12) 

From history, it is noted that many mega projects were initiated for CO2 methanation, and 
one of them is the Audi e-gas plant installed in Germany. This e-gas plant has a capacity of 6.3 
MW power input that was commissioned in 2013. This plant capitalizes on hydrogen from 
alkaline electrolyzers based on wind energy and uses CO2 which is produced from a nearby 
biogas plant via amine scrubbing (Vogt et al., 2019). Similarly, after 3 years, a new plant by 
Denmark was commissioned in 2016 having a capacity of 1 MW power input (Younas et al., 
2016). Many other pilot projects have been started like the PtG plant in Stuttgart and PtG 
ALPHA in Germany (Ghiringhelli et al., 2017; Weckhuysen & Yu, 2015). Thus, it is concluded 
that for the production of green and clean energy and fuels, CO2 methanation is the potential 
step to tackle the energy crisis of the increasing population as well this methanation process 
also helps to fabricate practical applications at lab and bulk scale.      

3.7. Academic Research Advancement 
3.7.1. Novel catalyst discovery   

All performed millions of experiments are now stored as a databank for collective purposes 
and this cloud-based technique is highly appreciated for future research. Using this databank, 
researchers, scientists, and theoreticians determine and process the dimension of the datum 
matrix by using the ML algorithms that are available to both industrialists as well as academic 
experts. So, the involvement of AI in this technology will surely boost to identification of 
catalysts of novel characteristics. Not only computer experts, but dimensional data matrix 
experts would be able to probe exceptional properties. A well-known prototype study-based 
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system, the DECADE is used for the identification, selection, and usage of catalysts [105, 106]. 
There are novel catalysts that have been discovered so far for CO2 hydrogenation to liquid 
fuels such as [In2O3, Cr2O3, ZnAl(Zr, Cr, Ga) Ox]/Zeolite, Cu, CoOx, bimetal, In2O3, ZnO-ZrO2, 
Pd(Pt, Au, Cu, Co, Ni)-In2O3, Na-Co-Cu(Mo), Na(K)-Fe-(Zn, Cu)/Zeolite, Pt/Co3O4, Li-Rh-Fe, Na-
Co2C, Cs-Cu-Fe-Zn, (Ni)CoAlOx, Cu@Na-Beta, and so on (Gao et al., 2020). 

3.7.2. AI guideline 

AI has improved the efficiency of catalysts for CO2 hydrogenation by discovering new and 
accelerated catalysts because it can identify new and powerful catalysts more quickly than 
conventional trial and error techniques. It predicts the performance based on their electronic 
characteristics and structural properties. Computational modeling, simulation, and ML 
techniques help to understand the working mechanisms of catalytic reactions and correlate 
the activity, selectivity with catalyst structure, and further guide to design models. AI can 
guide the optimum conditions for reactions like pressure, temperature, and molar ratio of 
reactants (H2 : CO2) to enhance the catalyst performance. By comparing the computational 
simulations with experimental data, one can refine the reaction conditions to attain higher 
productivity and efficiency via AI algorithms. It can help to optimize the durability and stability 
of catalysts under various operating conditions and to predict the sintering, surface oxidation, 
poisoning, etc. Knowing these parameters, one can guess about the long-term catalyst 
performance and lower the quest for frequent catalyst replacement and regeneration. To 
quickly screen huge libraries of catalytic materials and reactions, one can couple AI algorithms 
with high-throughput experimentation techniques and this coupling opens new doors for the 
discovery of novel catalysts.  

3.8. Challenges and Future   

To achieve the target of carbon neutrality, thermos-catalytic CO2 hydrogenation 
technology is much appreciable (Shahbaz et al., 2019), however, there are some critical 
problems linked with this such as hydrogen supply and carbon dioxide capture.  

3.8.1.  H2 price and abundance 

For CO2 hydrogenation, H2 is an important raw material and its price is considered more 
than half of the production cost in the coming days. The conventional sources of H2 are either 
fossil fuels or gasification, which produce CO2 that leads to environmental pollution and other 
serious problems. Alternatively, green hydrogen is selected as the best candidate for CO2 
hydrogenation because its production doesn’t produce CO2 and it is produced by electrolysis 
of H2O with the help of electricity which can be provided by wind, nuclear, solar, or other 
energy sources. But the cost of green hydrogen may be much greater than conventional type 
of hydrogen, so, we have to look for other green sources of hydrogen production to reduce 
its cost. More than 200 hydrogen energy power projects have been initiated worldwide, 
especially in Asia, Australia, and Europe. It is projected that by 2050, the cost of green 
hydrogen will be dropped to 1 $/kg according to the International Renewable Energy Agency 
and Hydrogen Council report (see https://hydrogencouncil.com/en/about-the-council/).  

3.8.2. CO2 capture 

On the other hand, CO2 capture is another big challenge for CO2 hydrogenation. However, 
the abundance of CO2 has increased up to 410 ppm, but there is still a problem with collecting 
direct CO2 from the atmosphere for utilization. Now, worldwide efforts have been started to 
collect CO2-rich waste gas and these efforts are promoting CO2 capture and storage 

https://hydrogencouncil.com/en/about-the-council/
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technologies. This capturing of CO2 is an energy-intensive step so far, but different 
mechanisms and reactions such as CaO-based sorbents are much more helpful for CO2 
capture (Chen et al., 2020). There are some other adsorbents such as metal-organic 
framework, ionic liquids, and zeolites which are being considered for CO2 capture (Eiaz et al., 
2018; Zeb et al., 2017).    

3.8.3. Future directions 

No doubt CO2 causes to greenhouse effect but on the other side, it is a precious feedstock 
also. There has been great development for catalysts for CO2 hydrogenation but still many 
challenges are there such as unclear CO2 hydrogenation mechanism, low target-product 
selectivity, and low CO2 conversion, etc. For example, different paths in reactions require 
different conditions like a closer distance between acidic zeolite and reducible metal oxide 
facilitates mass transfer in the MeOH-based pathway, which further suppresses the by-
products and entertains the formation of aromatics. In modified FTM analysis, a long distance 
between zeolite and iron-assisted catalyst is considered very crucial for the synthesis of 
aromatics. Thus, to develop the catalysis theory, there should be a strong relationship 
between catalyst structure and catalytic performance. Therefore, in-situ characterization 
techniques help out the development of efficient catalysts offer new pathways to probe the 
CO2 hydrogenation mechanism further encourages the identification of reaction 
intermediates, and assure the existence of active sites on every possible catalytic component 
in the process of tandem catalysis. It is noted that at high temperatures, more CO by-products 
are produced. Thus, it is another key problem to suppress the by-product selectivity. Many 
doors are to be disclosed in the future, to break the ASF model one should develop 
continuously efficient catalysts for the CO2 hydrogenation and should work on the 
improvement of target yield via a deep understanding of water behavior in reaction. One 
should utilize the advanced and in-situ characterization methods to sort out the catalytic 
mechanisms as well as one should find convenient and economical ways to understand green-
hydrogen production and CO2 capture. One should explore the key differences between CO2 
hydrogenation and syngas conversion, and these efforts will make new directions for the later 
industrialization of CO2 hydrogenation technologies. 

4. CONCLUSION 
 

In this review work, we have discussed the hydrogenation of CO2 extensively and its various 
possible mechanisms. Then a variety of catalysts and reaction parameters were studied. We 
have summarized the methods for CO2 hydrogenation and possible target products such as 
ethanol and methane. We have studied the role of AI in the discovery of novel catalysts based 
on quantum mechanical study tools such as DFT and Monte Carlo. CO2 emission is increasing 
day by day, which leads to the greenhouse effect. Thus, environment-friendly sources of CO2 
emission and H2 emission were studied. How AI can assist in validating the reaction 
performance and tune the reaction parameters, we have explored. In this article, we have 
proposed future directions in the CO2 hydrogenation industry by exposing new ideas to 
improve this industry. Data science experts, AI researchers, chemists, engineers, and 
experimentalists are highly encouraged to couple in this field to improve and explore new 
catalytic conditions as well as catalytic materials for high-throughput, instantly performance 
evaluation, 3D modeling, prototype simulated models, in-situ characterizations, and 
monitoring the rapidly discovered novel catalysts. For theoretical understanding and 
predictions, computational science experts and machine learning experts should couple for 
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automated computational simulations and reaction modeling with high-throughput 
responses. 
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