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to determine suppression performance. Results showed that

the device reduced oscillation amplitude by up to 68% within
the lock-in region, with optimal suppression observed at 25-
50% coverage. This indicates that partial surface
modification enhances flow—structure interaction and
weakens wake coherence. Furthermore, a bibliometric
analysis was integrated to identify research trends and gaps
in passive vibration control. The present approach provides
both scientific and practical insights for developing low-drag,
efficient, and sustainable VIV mitigation strategies in marine
engineering.
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1. INTRODUCTION

Vortex-induced vibration (VIV) has been widely studied for decades because of its
significant effect on the structural integrity and fatigue life of cylindrical structures such as
marine risers, pipelines, and bridge cables (Khalak & Williamson, 1999; Park et al., 2015; Yong
et al., 2025). When a bluff body is subjected to fluid flow, alternating vortices are shed from
its surface, creating fluctuating lift forces that generate self-excited oscillations in the
transverse direction (Khalak & Williamson, 1999; Shaharuddin & Darus, 2015). As a self-
regulating and self-excited phenomenon, VIV can cause severe fatigue damage, increase
dynamic loads, and lead to structural instability when oscillations persist for long durations
(Lu et al., 2023; Cicolin & Assi, 2017). Consequently, the fatigue life of marine risers can be
significantly reduced, resulting in safety risks and high maintenance and inspection costs
(Yong et al., 2025).

Controlling vibration is therefore a critical aspect in the design of marine structures.
Numerous studies have proposed both active and passive control techniques to minimize
vibration amplitude and extend structural lifespan (Zhao, 2023; Rabiee & Esmaeili, 2020; Liao
et al., 2023; Korkischko & Meneghini, 2010; Song et al., 2021; Sukarnoor et al., 2021; Ramzi
et al., 2022). Among these techniques, passive control devices are particularly attractive
because of their simplicity, reliability, and low operational cost. Such devices typically function
by modifying surface geometry or introducing three-dimensional disturbances that alter flow
separation and vortex shedding patterns (Ran et al., 2023; Jiménez-Gonzalez & Huera-Huarte,
2018; Law & Jaiman, 2018; Bearman & Brankovic, 2003). Several passive devices, including
helical strakes, fairings, splitter plates, and shrouds, have been developed and proven
effective in mitigating VIV (Yong et al., 2025; Li et al., 2025; Sun et al., 2020). Helical strakes,
for example, can reduce VIV amplitude by up to 70-90%, although they tend to increase drag
significantly in water applications (Gao et al., 2014; Quen et al., 2014; Li et al., 2020; Wang et
al., 2024). Fairings, while effective in both vibration and drag reduction, may experience
hydroelastic instability at high flow velocities (Cicolin & Assi, 2017; Park et al., 2015).

Beyond these conventional approaches, researchers have also examined the role of
surface roughness and geometric modifications in controlling flow separation and vortex
shedding. Changes in surface texture affect boundary-layer development, wake structure,
and the synchronization between vortex shedding and cylinder motion. Increasing surface
roughness delays or disrupts synchronization, thereby reducing vibration amplitude and
narrowing the lock-in range (Gao et al., 2018). Adding folds or bumps to cylindrical surfaces
can enhance turbulence and dissipate energy more effectively, resulting in improved
suppression performance, with efficiency increasing as roughness height becomes greater
(Wang et al., 2021). Biological modifications have also been shown to alter hydrodynamic
characteristics. Experiments demonstrated that partial surface coverage by natural elements
such as moss can lower vibration amplitude by disturbing wake formation and weakening
alternate vortex shedding (Zhu et al., 2024).

Marine fouling, which refers to the accumulation of organisms such as barnacles, algae,
and hydroids on submerged surfaces, naturally changes the flow regime around marine
structures (Gomez-Banderas, 2022; ldora et al., 2015). This process modifies surface
roughness and alters flow separation points, affecting the formation and synchronization of
vortices that cause VIV. The suppression effectiveness of fouling depends on several factors,
including the coverage ratio, spatial distribution, and type of fouling, with soft fouling often
providing greater damping and vibration reduction (Harandi et al., 2024). In addition, bio-
inspired surface protrusions and roughness patterns can influence vortex dynamics,
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promoting wake instability and thereby reducing VIV amplitude (Zou et al., 2024; Wu et al.,
2024).

An experimental investigation on the influence of marine fouling coverage and morphology
on VIV behavior revealed that fouling coverage effectively reduces peak oscillation amplitude,
lock-in range, and maximum lift coefficient, while fouling shape alters response branches and
synchronization limits. The study further showed that suppression efficiency depends on
parameters such as coverage ratio, aggregation, flow incidence, and fouling morphology.
These findings demonstrate that the impact of marine fouling on VIV is complex and
multidimensional, with both the extent and nature of fouling playing crucial roles in modifying
flow—structure interactions. However, the underlying mechanisms through which fouling
alters VIV response remain inadequately understood, indicating the need for further
systematic analysis.

This study offers a systematic experimental investigation on the influence of truncated
cone surface modification as a fouling suppression device for vortex-induced vibration (VIV)
control. We also added bibliometric analysis to support this study. Unlike previous works that
focused on conventional passive devices such as helical strakes and fairings, this research
examines a wider range of coverage ratios under low mass-damping conditions to determine
the optimal configuration for vibration suppression. The findings establish a new
understanding of how partial surface modification alters wake dynamics, reduces vortex
coherence, and improves flow—structure interaction. This contribution provides practical and
guantitative insight for developing low-drag, simple, and efficient passive control solutions in
marine and offshore structural design.

2. METHODS
2.1. Experimental set-up

The experiments were conducted in a circulating water flume at the National Water
Research Institute of Malaysia, which measured 1.5 m in width and 2.0 m in depth. Water
flow velocity, generated by a pump, varied from 0.11 to 0.58 m/s, with average increments
of 0.02 m/s. Based on the cylinder's diameter and flow velocity, this gave a Reynolds number
range of 8,237 to 43,431. Turbulence intensity was measured at 1.9% at an inflow velocity of
0.3 m/s.

A hollow polyvinyl chloride (PVC) cylinder model was used as a model in this experiment.
Figure 1(a) is the model that we created. The bare cylinder model, vertically mounted (Figure
1b) in the test section, had a submerged length (L) of 440 mm and a diameter (D) of 60 mm.
Depending on the diameter of the cylinder, the resulting aspect ratio is 6.67-7.33. The cylinder
mass ratio (m*) is 2.97, determined using the formula of 4m/ npD?L, where m is the total mass
of a cylinder and p is the fluid density. Figure 2 shows a free decay test, which determined the
structural damping coefficient in air to be 0.033, yielding a mass-damping parameter (m~) of
0.09801. On the other hand, the natural frequency of each cylinder with a truncated cone in
water varied from 0.933 to 0.983 Hz, which was obtained from a free decay test. The main
properties of the rigid cylinder model are listed in Table 1.

Supporting frames secured the test rig, PVC pipe, and sensor to the water flume wall. This
system was adapted from the previous design. Two parallel leaf springs (310 mm x 90 mm x
0.95 mm) provided a lateral stiffness of approximately 250 N/m, enabling the cylinder to
vibrate in the cross-flow (CF) direction. An accelerometer, positioned near the cylinder and
below the leaf springs, recorded the model's amplitude response. The sensor was calibrated
before each series of tests. Data was acquired at a rate of 200 Hz.
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(a)

(b)

Figure 1. Experimental setup in the water flume: (a) design; (b) realistic equipment

Table 1. Properties of cylinder model.

Unit M1 M2 M3 M4 M5
Coverage ratio % 0 25 50 75 100
Total Barnacle (N) - 397 794 1190 1568
Mean height of mm 0 3 3 3 3
artificial barnacle (h)
Upper diameter of mm 0 3 3 3 3
artificial barnacle (d)
Relative roughness (g) - 0 0.045 0.045 0.045 0.045
Spring stiffness (k) N/m 250 250 250 250 250
Submerged length of mm 440 440 440 440 440
PVC pipe (L)
Diameter of PVC pipe mm 60 66 66 66 66
(D)
Aspect ratio (L/D) - 7.33 6.67 6.67 6.67 6.67
Total mass of the kg 3.69 3.7 3.71 3.72 3.74
cylinder
Mass ratio - 2.97 2.46 2.46 2.47 2.48
Damping in air - 0.033 0.033 0.033 0.033 0.033
Mass-damping - 0.09801 0.08118 0.08118 0.08151 0.08184
Reduced velocity - 1.96-10.36
Reynolds number - 8237-43431
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Figure 2. Time series of amplitude response during free decay test.
2.2. Artificial Fouling as a Suppression Device

The fouling shape of truncated cones and semi-spherical protrusions can reduce VIV by
disrupting the span-wise correlation and synchronization of vortices shed from the cylinder,
thereby reducing the wake size. In designing the artificial fouling, the height and diameter of
the truncated cone are key parameters. In this study, the truncated cones were made from
Thermoplastic Polyurethane (TPU), an ideal material for submerged applications. A total of
two similar fouled sheets (Upper and Lower sheet) were used to cover the submerged length
of 440 mm, with a surface area of 82940 mm?.

2.2.1. Random cluster of truncated cones using Poisson Cluster Process

The distribution of artificial fouling on the cylinder model followed guidelines, utilizing a
Poisson Cluster Process (PCP) to generate random clusters of points. This statistical method
was employed to accurately model the aggregated spatial distribution of artificial marine
fouling, thereby better mimicking natural biofouling settlement patterns. Unlike regular
patterns, the PCP generates clumped random distributions, which more closely simulate
natural colonization. PCP is based on Equation (1), where @ is the total point field (truncated
cone locations), x is the series of points, ®,, is the parent Poisson process and n* is the point
of children around the parent.

o Unx (1)

X ecbp

The total number of barnacles (N) for each coverage ratio of 25, 50, and 75%, which are
397,794, and 1190, respectively, was predefined based on the ratio of barnacle coverage area
to the total unwrapped cylindrical area. Figure 3 shows the result from the Poisson Cluster
Process for 25, 50, and 75%, which are presented in Figures 3(a), 3(b), and 3(c), respectively.
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Figure 3. Poisson Cluster Process for truncated cone at a coverage ratio: (a) 25%, (b) 50%,
and (c) 75%.

2.2.2. Statistical Verification Using Distance to Nearest Neighbor

To verify the spatial characteristics of the PCP-generated truncated cone distribution, the
Distance to Nearest Neighbor (DNN) analysis (Edmonds et al., 2015; Clark & Evans, 1954) was
used. The DNN index is defined in Equation (2):

. @
T

where, 74 is the mean of the actual nearest neighbor distances measured from each truncated
cone center, 75 is the expected mean nearest-neighbor distance for a completely random
(Poisson) distribution, given by Equation (3):

_ 1 (3)
g = ——=
2,/p

N . . .
where p = - represents the spatial density of a truncated cone per unit surface area.
S

From the DNN analysis, the Clark—Evans R index from PCP indicates that the distribution of
the truncated cone is clustered, with a value R = 0.953 (less than 1). The mean nearest-
neighbor distance, 74, and the expected random distance, 75 values were found to be 3.98
and 4.17 mm, respectively. An R value less than one signifies a clustered distribution, whereas
values equal and greater than one represent random and regular distributions, respectively
(Clark & Evans, 1954). Therefore, the generated pattern confirms that the truncated-cone
elements exhibit non-random, clustered spatial characteristics. This observation is consistent
with the previous findings, who reported a similar clustered pattern with R = 0.88.

Figure 4 illustrates the coverage ratio of the upper sheet of artificial fouling, with 100%
designated as a regular distribution with N = 1568. We showed the coverage ratios of 25, 50,
75, and 100%, corresponding to Figures 4(a), 4(b), 4(c), and 4(d). The artificial marine fouling
was modeled as truncated cones with a mean height of 3 mm, representing an approximate
30-mm height in real conditions, and the larger diameter was set to be twice the smaller
diameter.
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Figure 4. Artificial fouling of truncated cone on upper sheet, with coverage ratio: (a) 25%, (b)
50%, (c) 75%, and (d) 100%.

3. RESULTS AND DISCUSSION
3.1. Bibliometric Analysis

A bibliometric analysis using the Scopus database revealed a rapid and consistent increase
in research related to marine studies, totaling 666,696 indexed documents from 1867 to 2025
(Figure 5). Publication growth accelerated sharply after 2010, indicating the global expansion
of multidisciplinary research in marine engineering, ocean sustainability, and offshore
technologies. In 2025 alone, 37,246 documents were published, reflecting sustained scientific
attention to marine-related innovation. This upward trend underscores the growing
importance of hydrodynamic stability, energy-efficient design, and vibration control within
marine applications, positioning the present study within a highly active and evolving research
domain.
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Figure 5. Bibliometric analysis from Scopus database using keyword “marine”, taken on
November 2025.
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3.2. Validation of the Study

The VIV experiment in this present study is validated by comparing its amplitude response
with previous data. Figure 6 shows the graph of maximum CF amplitude ratio (A, /D) versus
reduced velocity (U;) obtained through an equation of U/f,D, where U is the velocity of the
water, f, is the natural frequency, and D is the diameter of the cylinder. The amplitude
response pattern of the bare cylinder in this study demonstrates good agreement with the
previous findings. No significant vibration response was observed in the reduced velocity
range of 2.0 < U, <3.9. The cylinder began to vibrate at 3.93 < U,< 9.28, maintaining consistent
oscillations beyond U, = 9.646. This observation aligns with previous studies, where a
remarkable feature was the absence of a lower branch in their amplitude response, showing
no indication of decreasing even near U, = 10. Due to limitations of the experimental water
flume in this study, it was not possible to increase water speed sufficiently to completely
observe the lower branch of the amplitude response. This absence of a lower branch at U, >
6 is likely attributable to the smaller mass ratios (m* = 4) in their experiment. Indeed, this
contrasts with previous works where the lower branch was observed in systems with larger
mass ratios. This perspective is further supported by references (Assi et al., 2009; Assi et al.,
2010), indicating that smaller mass ratio systems (m* = 2.0) may show no differences between
initial and upper branches, with the lower branch appearing much later, around U, 2 10,
thereby confirming the significant impact of mass ratio on VIV characteristics.

1.6

1.4 ‘ﬁlﬂ
. LY
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1 O' ® Goncealves et al. (2013)
O

A 0.8 L ® Saltara & Meneghini
< & (2003)
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Figure 6. Result of the amplitude ratio for the bare cylinder from the present and previous
studies.

3.3. Effect of Truncated-Cones on Vibration Amplitude

Figure 7 illustrates the influence of artificial fouling, at coverage ratios of 0, 25, 50, 75, and
100%, on the cylinder’s vibration amplitude response, providing insights into the performance
of truncated cones in suppressing VIV. A notable observation from the amplitude response is
the significant reduction in the peak amplitude of fouled cylinders compared to the bare
cylinder across the range of tested reduced velocities. Initially, for all fouled configurations,
the amplitude increased steadily, remaining below an amplitude ratio, A,/D = 0.3, suggesting
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a general suppressive effect of the truncated cones. However, distinct behavioral differences
emerged at higher reduced velocities, where the oscillation amplitude for cylinders with 25
and 50% coverage ratios decreased, reaching a minimum amplitude ratio of approximately
0.17D. In contrast, the cylinders with 75 and 100% coverage ratios exhibited a continuous
increase in amplitude at higher reduced velocities, approximately 0.37D. The highest
amplitude ratio for a fouled cylinder was observed at U= 10.03 for the cylinder with a 100%
coverage ratio. This critical observation indicates that less dense coverage ratios of truncated
cones are more effective in suppressing vibration. These findings align with previous research,
which similarly found that a cylinder with a 100% coverage ratio exhibited less suppression
efficiency compared to configurations with smaller coverage ratios, such as 33%.
Interestingly, the suppression efficiency emphasizes that higher coverage does not invariably
lead to improved suppression. The introduction of a truncated cone passive device on the
cylinder promotes three-dimensional wake disturbances, creates sufficient disturbance to
disrupt existing vortices while simultaneously leaving enough gaps to hinder the formation of
a new large-scale wake, thus reducing amplitude and altering wake structure (Bearman &
Brankovi¢, 2004).
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Figure 7. Amplitude response of truncated cone with different coverage ratios
3.4. Effect of Vibration Frequency

Figure 8 compares the frequency responses of the bare cylinder and fouled cylinders with
coverage ratios of 25, 50, 75, and 100%. The time series of amplitude responses was
converted using Fast Fourier Transform (FFT) to obtain the frequency response. Typically, for
smooth circular cylinders in the subcritical Reynolds number range (103 < Re < 10°), the
Strouhal number (St) is approximately 0.2 (Modir & Goudarzi, 2018). However, the analysis of
the frequency response in this present study revealed a Strouhal number of 0.1125, which is
notably smaller than this conventional value.

Research indicates that the St value is highly sensitive to aspect ratios below 13, with values
consistently lower than those observed for high aspect ratio cylinders. St number of 0.111 for
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an L/D = 7.5 cylinder, consistent with the present findings. This reduction is primarily due to
the formation of a three-dimensional wake (Cicolin & Assi, 2017; Rahman & Thiagarajan,
2015a), which induces a more turbulent region and consequently leads to a decreased
frequency of vortex shedding.

1.6
1,4 o
gafEe
1,2 Eﬁﬁtéié_ 000 O 0%cylinder
1 éég___ﬁ 880@ O 25%cylinder
:9?§ 088
+ .
= + o®%. o
0.8 3":‘63@ y=0.1125x ¢ 50% cylinder
0.6 o+ ?ﬁgqﬁ ' A 75% cylinder
o ) +  100% cylinder
04 BE8
0,2 oo
0
0 2 4 6 8 10 12
U,

Figure 8. Frequency response of a bare and fouled cylinder.

The cylinders fitted with truncated cones began to vibrate at a reduced velocity of U, =
4.28, and the vibration amplitude increased with further increments in flow velocity. Notably,
the frequency ratio (ratio of response frequency to natural frequency) approached unity
beyond U = 5.35, signifying the onset of the lock-in phenomenon for all coverage ratios. The
phenomenon of "synchronization" or "lock-in" is observed when the frequency of vortex
shedding aligns with or approaches the natural frequency of the cylinder, leading to a
significant increase in vibration amplitudes (Modir & Goudarzi, 2018; Park et al., 2015).
However, the frequency response pattern in Figure 8 reveals a non-classical lock-in behavior
rather than a classical three-branch response. This behavior is attributed to the low mass ratio
of the system (m* = 2.46-2.97), in which the structure’s response frequency is not strictly
locked to the vortex-shedding frequency throughout the lock-in range. Instead, the
synchronization occurs gradually, and the amplitude exhibits a single continuous branch
without a distinct lower branch. The absence of a lower branch and the extended
synchronization range confirm that the system follows the characteristics of non-classical
lock-in, typically observed in light, low-damping cylinders (Gongalves et al., 2013; Assi et al.,
2010).

4. CONCLUSION

This study examined the efficacy of truncated cones in mitigating VIV on a circular cylinder.
In a low-mass system, coverage ratios as low as 25-50% were able to suppress peak
amplitudes by up to ~68% compared to a bare cylinder. The findings indicate that specific
coverage ratios effectively reduce amplitude response and modify frequency characteristics.
Notably, configurations with lower coverage ratios, such as 25%, exhibited superior VIV
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suppression compared to those with higher coverage ratios, including 100%. This suggests
that an optimal balance between surface modification and flow interaction is crucial for
effective VIV suppression, rather than simply maximizing the modified surface area. Future
research should explore the behavior of these suppression mechanisms, particularly under
higher reduced velocity, to have a deep understanding of the amplitude response under
varying mass-damping parameters.

This study examined the effectiveness of a truncated cone fouling suppression device in
mitigating VIV of a circular cylinder under low mass-damping conditions. Experimental results
demonstrated that coverage ratios of 25-50% significantly reduced vibration amplitude,
achieving up to 68% suppression within the lock-in region. The findings indicate that partial
surface modification enhances flow—structure interaction and disrupts vortex
synchronization more effectively than full coverage. This confirms that an optimal balance
between surface modification and flow disturbance is essential for efficient VIV suppression.
In addition, a brief bibliometric analysis further revealed increasing global research interest
in this study. These insights reinforce the scientific relevance and applicability of the present
findings in advancing low-drag, energy-efficient design strategies for marine and offshore
structures.
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